Тайны чисел. Математическая одиссея - Маркус Дю Сотой Страница 5
Тайны чисел. Математическая одиссея - Маркус Дю Сотой читать онлайн бесплатно
Ознакомительный фрагмент
Это произведение называется подобающим образом: Longplayer («Долгоиграющее»).
Сначала Файнер создал музыкальное произведение, в котором звучат тибетские поющие чаши и гонги разного размера. Длительность исходной музыки 2 минуты 20 секунд. Но, используя различные уловки, подобные мессиановским, Файнер растянул ее до 1000 лет. Шесть копий исходного произведения проигрываются одновременно, но с разной скоростью. Помимо этого, каждая из дорожек смещается через 20 секунд на заданный интервал. Величина этой сдвижки разная для разных дорожек. Математика используется именно для того, чтобы рассчитать такую величину смещения, чтобы музыка начала повторяться спустя 1000 лет.
Вы можете послушать Longplayer, если посетите http://longplayer.org.
Не только музыканты одержимы простыми числами: они, по-видимому, задевают струну, которая объединяет многих творцов в различных областях искусства. Писатель Марк Хэддон использовал только простые числа для нумерации глав в своем бестселлере «Загадочное ночное убийство собаки» (The Curious Incident of the Dog in the Night-Time). Рассказчик в этом романе – подросток Кристофер, страдающий синдромом Аспергера. Кристофер любит математический мир, потому что он подвластен разуму и его логика не таит в себе сюрпризов. В противоположность этому мир человеческих отношений настолько полон неопределенностей и алогичных поворотов, что Кристофер не может с ним справиться. Как он объясняет: «Я люблю простые числа… Я думаю, что простые числа напоминают жизнь. Они крайне логичны, но в их правилах невозможно разобраться, даже если вы проведете всю свою жизнь в размышлениях о них».
Простые числа даже поучаствовали в фильмах. В футуристическом триллере «Куб» семь персонажей заперты в лабиринте комнат, который напоминает сложный кубик Рубика. Форма каждой из комнат соответствует кубу, в котором есть шесть дверей, ведущих к последующим комнатам. Фильм начинается с того, что герои просыпаются и понимают, что оказались в лабиринте. У них нет ни малейшего представления, как они там оказались, но им необходимо выбраться наружу. Беда в том, что в некоторых комнатах их ожидают коварные ловушки. Героям необходимо каким-то образом предсказать до того, как они войдут в комнату, безопасна ли она. Иначе им будет уготована та или иная ужасная смерть: они могут быть сожжены заживо, облиты кислотой, разрезаны на крошечные кубики. Герои фильма выясняют это после того, как один из них был убит.
Среди действующих лиц есть знаток математики – Джоан, которая внезапно понимает, что числа у входа в каждую комнату определяют, находится ли за дверью ловушка. По всей видимости, если среди чисел у входа в комнату есть простое, то в ней таится опасность. «Ты – светлая голова», – говорит Джоан предводитель группы, услышав об этой математической дедукции. Однако выясняется, что оказавшимся в лабиринте нужно также опасаться степеней простых чисел, что превосходит возможности сообразительной Джоан. Вместо нее действующим лицам нужно надеяться на другого товарища по несчастью – аутистичного таланта. В конце только он выходит из лабиринта живым.
Как открыли цикады, знание математики является ключом к выживанию в этом мире. Любому учителю математики, столкнувшемуся с проблемами мотивации своих учеников, можно рекомендовать рассказ о кровавых смертях в «Кубе» в качестве действенной пропаганды, чтобы заставить подопечных учить простые числа.
Когда писатели-фантасты хотят, чтобы инопланетяне вступили в общение с землянами, они сталкиваются с определенными проблемами. Предполагают ли авторы, что инопланетяне настолько умны, что стремительно обучаются местному языку? Или они изобрели искусный автоматический переводчик наподобие Babel Fish? [1] А может, литераторы полагают, что каждый во Вселенной говорит по-английски?
Одно из решений, к которому прибегает ряд авторов, состоит в использовании языка математики – единственного по-настоящему универсального языка. Его первые слова, который должен знать каждый, своего рода строительные кирпичики речи, – простые числа. В романе Карла Сагана «Контакт» Элли Эрроуэй, участвующая в программе ПВЦ (поиск внеземных цивилизаций), обнаруживает сигнал. Она вскоре понимает, что это не фоновый шум, а последовательность импульсов, которые являются двоичным представлением чисел. Когда она переводит их в десятичную систему счисления, то моментально понимает закономерность: 59, 61, 67, 71 – все эти числа простые. Разумеется, в продолжении сигнала также содержатся простые числа, и они доходят до 907. Это не может быть делом случая, заключает она. Кто-то говорит «привет».
Многие математики полагают, что, даже если на другом конце Вселенной имеется другая биология, другая химия или даже другая физика, математика будет одной и той же. Изучающий учебник математики житель планеты, вращающейся вокруг Веги, будет по-прежнему считать числа 59 и 61 простыми. Ведь, как выразился знаменитый кембриджский математик Г. Х. Харди, эти числа являются простыми «не потому, что мы так считаем, и не потому, что наше сознание сформировалось тем или иным образом, а потому, что так устроена математическая действительность».
Знание о простых числах объединяет Вселенную, но все же интересно задаться вопросом, рассказывают ли истории, подобные этой, в других мирах. То, как мы изучали эти числа на протяжении тысячелетий, привело к открытию нами ряда важных истин в отношении простых чисел. На каждом этапе данного пути мы видим отчетливый след той или иной культурной перспективы, замечаем математические лейтмотивы, соответствующие историческому периоду. Может ли статься так, что у других культур во Вселенной имеются другие перспективы, делающие очевидными им теоремы, еще не открытые нами?
Карл Саган не был первым, кто предложил использовать простые числа как средство общения, и не будет последним. Простые числа даже использовались НАСА при попытках установить контакт с внеземными цивилизациями. В 1974 г. с радиотелескопа Аресибо в Пуэрто-Рико было отправлено послание в направлении шарового звездного скопления М13, выбранного по причине огромного числа звезд в нем. Это увеличивает вероятность, что оно будет получено каким-то разумным существом.
Рис. 1.05. Послание, отправленное радиотелескопом Аресибо, в направлении звездного скопления М13
Послание состояло из последовательности 0 и 1, кодирующих черные и белые пиксели рисунка. На реконструированном изображении показано двоичное представление чисел от 1 до 10, схема строения ДНК, описание нашей Солнечной системы и эскиз самого радиотелескопа Аресибо. Принимая во внимание, что во всем послании лишь 1679 пикселей, изображение не слишком-то детально. Но выбор числа 1679 был намеренным, потому что в нем содержится ключ к расположению пикселей. 1679 = 23 × 73, поэтому существует лишь два способа расположения пикселей в виде прямоугольника. Если их разместить в 23 ряда и 73 колонки, то получится хаотичный рисунок, но расположите их другим способом – в 73 ряда и 23 колонки, и получится правильный результат. Звездное скопление М13 находится от нас на расстоянии 25 000 световых лет, поэтому ответ придет не раньше чем через 50 000 лет!
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Комментарии