Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир Страница 35

Книгу Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир читать онлайн бесплатно

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир - читать книгу онлайн бесплатно, автор Джон Дербишир

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Из бесконечной суммы исчезли все члены, содержащие числа, кратные тройке! Первое выжившее число — это теперь 5.

Умножив теперь обе части полученной формулы наПростая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике, будем иметь

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

А теперь, вычитая это равенство из предыдущего и рассматривая на этот разПростая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике как неделимую конструкцию, видим, что в левую часть одного выражения она входит с множителем 1, а в левую часть другого — с множителемПростая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. Вычитание дает

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Все слагаемые с числами, кратными 5, исчезли при вычитании, и первое выжившее число в правой части — это 7.

Замечаете сходство с решетом Эратосфена? Но вы должны заметить и отличие. При работе с исходным решетом мы оставляли сами простые числа в неприкосновенности, удаляя только их кратные — числа, полученные из них умножением на 2, 3, 4, …. Здесь же при вычитании мы устраняем из правой части как само простое число, так и все его кратные.

Если продолжать описанную процедуру до достаточно большого простого числа, скажем, до 997, мы получим

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Теперь заметим, что если s — любое число, большее единицы, то правая часть этой формулы совсем ненамного больше чем просто 1. Например, при s = 3 правая часть этой формулы равна 1,00000006731036081534… Поэтому выглядит довольно правдоподобным предположение, что если продолжать указанный процесс до бесконечности, то для любого числа s большего 1 получится следующий результат (7.1):

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

где в левой части содержится ровно одно выражение в скобках для каждого простого числа, причем эти скобки продолжаются налево без конца. Теперь поделим обе части полученного выражения последовательно на каждую из этих скобок (7.2):

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

IV.

Это — Золотой Ключ. Чтобы он предстал перед нами во всей красе, давайте немного его почистим. Дроби с дробными знаменателями нравятся мне ничуть не больше, чем вам, а кроме того, есть еще полезные математические приемы, которые позволят нам сэкономить на наборе формул.

Прежде всего вспомним 5-е правило действий со степенями: оно говорит, что a−N есть 1/aN и a−1 есть 1/a. Поэтому выражение (7.2) можно записать поаккуратнее:

ζ(s) = (1 − 2−s)−1×(1 − 3−s)−1×(1 − 5−s)−1×(1 − 7−s)−1×(1 − 11−s)−1×….

Есть даже еще лучший способ. Вспомним про обозначение ∑, введенное в главе 5.viii. Когда мы складываем компанию слагаемых единообразной структуры, их сумму можно записать коротко, используя знак ∑; у этого имеется эквивалент для умножения, когда сомножители имеют единообразную структуру: тогда используется знак ∏. Это заглавная греческая буква «пи», используемая в этом качестве из-за слова «product» (произведение). Используя знак ∏, выражение (7.2) можно переписать таким образом:

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Читается это так: «Дзета от s равна взятому по всем простым числам произведению от величины, обратной единице минус p в степени минус s». Подразумевается, что маленькое p под знаком ∏ означает «по всем простым». [55] Вспоминая определение функции ζ(s) в виде бесконечной суммы, можно подставить эту сумму в левую часть и получить

Золотой Ключ (7.3):

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Комментарии

    Ничего не найдено.