Золотой билет. P, NP и границы возможного - Лэнс Фортноу Страница 32

Книгу Золотой билет. P, NP и границы возможного - Лэнс Фортноу читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Золотой билет. P, NP и границы возможного - Лэнс Фортноу читать онлайн бесплатно

Золотой билет. P, NP и границы возможного - Лэнс Фортноу - читать книгу онлайн бесплатно, автор Лэнс Фортноу

Вернемся к схемам для поиска клики, которые мы только что построили. Заметьте, что в них нет ни одного вентиля «НЕ». Вообще-то некоторые схемы реализовать без отрицания нельзя: оно необходимо даже для такой простой операции, как «исключающее ИЛИ». А вот в задаче о клике можно обойтись одними только «И» и «ИЛИ» – правда, размер подобных схем будет просто устрашающий.

В 1985 году Александр Разборов – студент Математического института им. В. А. Стеклова в Москве – доказал, что любая схема, реализующая алгоритм для задачи о клике при помощи одних лишь вентилей «И» и «ИЛИ» (т. е. без использования «НЕ»), обязательно содержит огромное число элементов. Конечно, проблему равенства P и NP это не снимало; использование элемента «НЕ» вполне могло бы привести к значительному сокращению размера схемы, хотя для задачи о клике он совсем не обязателен.

Тем не менее результат Разборова сочли огромным прорывом на пути к решению вопроса о P и NP. В то время я учился в аспирантуре, и мой научный руководитель Майкл Сипсер сказал, что решение это уже почти у нас в руках: осталось лишь придумать, как модифицировать доказательство Разборова таким образом, чтобы в него можно было «подсунуть» элементы отрицания. Если это удастся, то любая схема, реализующая задачу о клике при помощи полного набора базовых операций – «И», «ИЛИ», «НЕ», – обязана будет содержать огромное число элементов. Поскольку эффективные алгоритмы реализуются небольшими схемами, отсюда будет следовать, что NP-полная задача о клике эффективного алгоритма не имеет, а значит, не принадлежит классу P. Таким образом, неравенство P и NP будет доказано. К сожалению, в реальной жизни все обстоит несколько сложнее.

В Соединенные Штаты ранние работы Разборова попали непереведенными. Сипсер привлек к делу несколько русских студентов; вместе они в ожидании чуда скрупулезно переводили текст на английский и с каждой следующей статьей надеялись, что вопрос о равенстве P и NP вот-вот будет закрыт. Авторству Разборова принадлежит целый ряд замечательных работ, однако ключ к доказательству неравенства P и NP они не дают.

В третьей главе мы разбирали задачу о числе паросочетаний и составляли из дружеских пар романтические. Как и в случае с кликой, для решения задачи о паросочетаниях можно строить схемы, содержащие только операции «И» и «ИЛИ». Для оценки общего числа элементов подходят те же методы, что были использованы в задаче о клике. Поэтому схемы, решающие задачу о паросочетаниях при помощи одних лишь «И» и «ИЛИ», всегда содержат огромное число элементов.

Впрочем, для паросочетаний, в отличие от клики, эффективные алгоритмы все же существуют, а значит, существуют и небольшие схемы из элементов «И», «ИЛИ» и «НЕ». Конечно, отрицание использовать совсем не обязательно, однако с его помощью число элементов схемы можно значительно уменьшить. Простой и скромный вентиль «НЕ» на самом деле гораздо мощнее, чем кажется.

Все это практически сводит на нет любые попытки разобраться с классами P и NP, основываясь на результатах Разборова относительно клики. Если для решения некоторой задачи при помощи одних лишь «И» и «ИЛИ» требуется схема из огромного числа элементов, то отсюда вовсе не следует, что при добавлении «НЕ» ситуация останется прежней. В более поздних работах Разборов этот вопрос прояснил; он четко показал, почему для схем с отрицанием его методы не годятся, и почему их почти наверняка невозможно будет переделать.

Позже Разборов в соавторстве со Стивеном Рудичем из Университета Карнеги-Меллон разработал понятие «естественного доказательства», охватывавшее широкий спектр методов, применяемых для оценки сложности схем. Ученые показали, что при помощи естественных доказательств проблему равенства P и NP решить невозможно.

«Неестественные» методы доказательства могут основываться на парадоксах, подобных тем, что обсуждались выше. Разработка таких методов для схем уже принесла некоторые плоды, однако доказать, что для некоторой NP-полной задачи требуется большая схема (и решить тем самым вопрос о равенстве P и NP), вряд ли когда-нибудь получится; надежда на это постепенно угасает.

Как не доказать, что P ≠ NP

6 августа 2010 года сотрудник исследовательской лаборатории Hewlett-Packard Винэй Деолаликар разослал двадцати двум ведущим специалистам в области теоретической информатики препринт своей работы, лаконично озаглавленной «P ≠ NP». Многие мечтают прославиться и сорвать большой куш, т. е. миллион долларов от Математического института Клэя; то и дело из ниоткуда возникают люди с «доказательствами», заявляющие, что проблема решена и они установили, что P равно NP, или что P не равно NP, или что решить этот вопрос нельзя, или что он вообще не имеет смысла. Каждый год десятки подобных работ выкладывают в интернет, предлагают в научные журналы и рассылают по электронной почте известным ученым. В одно из самых престижных изданий по теоретической информатике – Journal of ACM – «доказательства» идут непрерывным потоком. Журнал даже разработал специальную политику для авторов:

«В редакцию регулярно поступают работы, авторы которых претендуют на решение известных открытых проблем теории сложности, в частности – проблемы равенства классов P и NP. Рассмотрение и рецензирование подобных работ осуществляется на добровольной основе и отнимает значительную часть редакционных ресурсов, поскольку требует проведения тщательного анализа на предмет выявления возможных ошибок. Редакция не исключает вероятность того, что проблема равенства P и NP, а также связанные с ней вопросы будут когда-нибудь решены; попытки доказательства таких проблем по-прежнему приветствуются. Тем не менее с целью избавления от дополнительной нагрузки, вызванной регулярной проверкой одних и тех же работ, которые после исправления выявленных в процессе рассмотрения ошибок направляются в редакцию повторно, для авторов устанавливаются следующие ограничения: рукописи по проблеме равенства P и NP и другим связанным с ней открытым проблемам теории сложности можно представлять в редакцию не чаще, чем раз в два года, – за исключением случаев, когда у автора имеется специальное разрешение от главного редактора. Данное правило касается также повторного предоставления ранее отклоненных рукописей».

По большей части представляемые доказательства абсолютно нечитабельны или пестрят глупейшими ошибками, и научное сообщество их просто-напросто игнорирует. Однако в случае с Деолаликаром дело приняло совсем другой оборот: у ученого уже имелся целый ряд научных публикаций, а качество представленной работы выгодно отличало его от других претендентов. Некоторые специалисты полагали, что труд Деолаликара заслуживает самого пристального рассмотрения. Из-за этого твиты и блоги запестрели преждевременными сообщениями о том, что проблема тысячелетия решена. Доказательство изучали известные математики и кибернетики; в результате всплыли как мелкие и средние недочеты, так и серьезные изъяны. Уже 16 августа – всего через десять дней после выхода препринта Деолаликара – газета New York Times опубликовала статью под названием Step 1: Post Elusive Proof. Step 2: Watch Fireworks, в которой описывалась вся эта история. К тому времени научное сообщество пришло к единому мнению: доказательство принять нельзя, поскольку в нем содержатся серьезные ошибки. Вопрос о равенстве P и NP по-прежнему оставался открытым.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Комментарии

    Ничего не найдено.