Микрокосм. E. coli и новая наука о жизни - Карл Циммер Страница 10
Микрокосм. E. coli и новая наука о жизни - Карл Циммер читать онлайн бесплатно
Ознакомительный фрагмент
Первым ученым, кто как следует изучил механизм движения E. coli, стал Говард Берг, биофизик из Гарварда. В начале 1970–х гг. Берг построил микроскоп, способный отслеживать движение единичной E. coli в капле воды. После каждого кульбита ориентация тела и, соответственно, направление движения палочки менялись случайным образом. Берг зарисовал траекторию движения одного микроорганизма в течение нескольких минут и получил на листе каляку — маляку; наверное, так мог бы выглядеть клубок пряжи в невесомости. Непрерывно работая жгутиком, E. coli все это время оставалась в пределах крошечного пространства и никуда особенно не продвигалась.
Но стоит бактерии почувствовать что‑то интересное, как она устремится в заданном направлении. Способность E. coli ориентироваться в пространстве достойна удивления — ведь у нее так мало возможностей. У нее нет ни колес, ни крыльев; все, что она способна делать, — это плыть прямо или кувыркаться. К тому же она получает так мало информации об окружающей среде! E. coli не может воспользоваться атласом, посмотреть или прислушаться; она способна лишь почувствовать молекулы, на которые случайно наткнулась в своих странствиях. Зато уж эти ограниченные возможности бактерия использует на полную катушку. Опираясь на несколько простых и элегантных правил, E. coli всегда попадает туда, куда ей нужно попасть.
У E. coli есть мембранные рецепторы, внешние концы которых торчат наружу, как перископы у подводной лодки. На переднем конце бактерии сосредоточено несколько тысяч таких рецепторов; они служат ей в качестве своеобразного «языка». Эти рецепторы делятся на пять разных типов, каждый из которых связывает определенные молекулы. Некоторые молекулы привлекают E. coli, другие внушают отвращение. Привлекательная молекула (например, аминокислота серин) запускает внутри микроорганизма последовательность химических реакций с простым результатом: E. coli увеличивает промежуток направленного движения между кульбитами. До тех пор пока концентрация серина в окружающей жидкости растет, E. coli продолжает делать более длинные заплывы и реже менять направление. Если очередной кульбит направит бактерию прочь от источника серина, участки ее прямолинейного движения сразу же станут короче. Этого простого принципа достаточно, чтобы E. coli медленно, но верно продвигалась к точке максимальной концентрации серина. Добравшись до места, она там и остается, вновь вернувшись к бесцельному кувырканию.
Ученые начали разбираться в способе восприятия и движения E. coli в 1960–е гг. Этот микроорганизм был выбран из‑за своей простоты: исследователям казалось, что и разобраться в нем будет несложно. В конце концов, работу белков в лабораториях мира уже 20 лет изучали на всевозможных мутантных штаммах E. coli. А разобравшись с обработкой информации у E. coli, можно будет переходить к более сложным системам обработки информации, включая и человеческий мозг. Сегодня, более 40 лет спустя, ученые понимают сигнальную систему E. coli лучше, чем любого другого биологического вида, но эта работа еще далеко не закончена. Некоторые части этой системы действительно оказались несложными. Так, E. coli не нужно рассчитывать фигуры высшего пилотажа, всякие бочки и штопоры. Ее простая стратегия (движение — кульбит) работает очень хорошо. Может быть, не каждая кишечная палочка попадет в точности туда, куда ей нужно, но многие попадут — и именно эти микроорганизмы выживут и оставят потомство (а значит, передадут отпрыскам стратегию движение — кульбит). Это все, что на самом деле нужно бактерии.
Тем не менее некоторые важные аспекты навигационной системы E. coli пока не поддаются расшифровке. «Язык» микроорганизма способен различать крохотную разницу в концентрации интересующих E. coli молекул — вплоть до одной тысячной. Бактерия умеет усиливать сигналы — каким образом, ученые до сих пор не поняли. Возможно, рецепторы E. coli работают согласованно: один из них, поворачиваясь, заставляет повернуться и соседние. Не исключено, что бактерия умеет анализировать одновременно различные потоки информации: ага, концентрация кислорода быстро растет, никеля — снижается, чуть потянуло глюкозой. Вообще, со временем может оказаться, что набор рецепторов у E. coli — не просто своеобразный бактериальный «язык»; может быть, лучше было бы назвать его мозгом.
Сложный чувствительный «язык» E. coli не слишком хорошо согласуется с традиционными представлениями о бактериях как примитивных и простых существах. Еще в середине XX в. бактерии сохраняли репутацию примитивных живых организмов, реликтов ранних этапов эволюции жизни. Считалось, что это всего лишь мешочки с ферментами и некоторым количеством ДНК, плавающей внутри подобно комку спутанных макарон. Их противопоставляли так называемым «высшим» организмам (животным, растениям, грибам), клетки которых удивительно организованы — ДНК в них аккуратно намотана на белковые катушки (каждая молекула ДНК намотана на множество маленьких катушек) и скомпонована в хромосомы, а хромосомы заключены в ядро. В этих клетках есть и другие отделы со своими функциями, такими как производство энергии или внесение последних штрихов при строительстве белковых молекул. Кроме того, эти клетки обладают собственным скелетом, состоящим из сети перекрещивающихся волокон.
Контраст между двумя видами клеток — неупорядоченными и хорошо организованными — был так силен, что в середине 1900–х гг. ученые именно по этому признаку разделили живые организмы на две большие группы. Все биологические виды, в клетках которых имеются ядра, стали называть эукариотами, что в переводе с греческого означает «истинное ядро». Все остальные виды, включая E. coli, назвали прокариотами. Подразумевалось, что до появления настоящего ядра существовали только прокариоты — примитивные и неорганизованные, а эукариот эволюция создала позже, привнеся тем самым порядок в окружающий нас мир.
Надо сказать, что такой подход несет в себе зерно истины. Общий предок всех живых организмов почти наверняка не имел клеточного ядра и, вероятно, выглядел примерно как сегодняшние прокариоты. Эукариоты отделились от прокариот более 3 млрд лет назад, но ядро и остальные отличительные признаки приобрели позже. Однако на самом деле разница между прокариотами и эукариотами не так велика, как представляется на первый взгляд. Просто организованность эукариот бросается в глаза. В человеческой клетке можно без труда увидеть хромосомы, замысловатые изгибы аппарата Гольджи и похожие на сардельки митохондрии. География такой клетки очевидна. Но оказывается, у прокариот тоже есть своя география. Они содержат молекулы в строгом порядке, но ученые лишь недавно начали потихоньку узнавать этот тайный порядок.
И, как обычно, многие открытия связаны с E. coli. Кишечной палочке и другим микроорганизмам, чтобы выжить, необходимо решить множество сложнейших проблем, но самая серьезная из них — поддержание порядка в собственной ДНК. Дело в том, что хромосома E. coli в тысячу раз длиннее самой бактерии. Если просто засунуть ее внутрь бактерии, то двойная спираль молекулы ДНК скрутится в кошмарный клубок, как спутанная бечевка. Ферменты, считывающие гены, не смогут разобраться в такой путанице, не найдут там ни начала, ни конца. Они даже не смогут связаться с цепочкой ДНК для производства новых белков.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Комментарии