Теория игр. Искусство стратегического мышления в бизнесе и жизни - Барри Дж. Нейлбафф Страница 23

Книгу Теория игр. Искусство стратегического мышления в бизнесе и жизни - Барри Дж. Нейлбафф читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Теория игр. Искусство стратегического мышления в бизнесе и жизни - Барри Дж. Нейлбафф читать онлайн бесплатно

Теория игр. Искусство стратегического мышления в бизнесе и жизни - Барри Дж. Нейлбафф - читать книгу онлайн бесплатно, автор Барри Дж. Нейлбафф

Ознакомительный фрагмент

Какова роль компьютеров во всем этом? Было время, когда проект написания программ, которые позволили бы компьютеру играть в шахматы, считался неотъемлемой частью новой области науки – искусственного интеллекта, цель которой состояла в создании компьютеров, способных мыслить подобно человеку. Но за многие годы этого так и не удалось добиться, поэтому ученые стали уделять все больше внимания тому, что компьютеры делают лучше всего, – математическим вычислениям. Компьютеры просчитывают наперед больше ходов и делают это быстрее, чем люди {39}. Опираясь на одни только математические вычисления, в конце 1990-х годов специальные шахматные компьютеры, такие как Fritz и Deep Blue, смогли соперничать с лучшими шахматистами.

Рейтинг шахматистов определяется по результатам игр; рейтинг лучших шахматных компьютеров сопоставим с рейтингом 2800, который имеет сильнейший шахматист мира Гарри Каспаров. В ноябре 2008 года Каспаров сыграл матч из четырех партий с последней версией компьютера Fritz – X3D. В итоге в двух партиях каждая из сторон одержала победу, а две партии завершились вничью. В июле 2005 года шахматный компьютер Hydra нанес полное поражение Майклу Адамсу, который занимал 13-е место в рейтинге лучших шахматистов мира: пять партий компьютер выиграл, а одна завершилась вничью. Возможно, не за горами то время, когда компьютерные программы займут первые места в рейтинге и начнут играть друг с другом на чемпионатах мира по шахматам.

Какие выводы следуют из этой истории о шахматах? Она показывает, каким должен быть ход размышлений в любых играх высокого уровня сложности, с которыми вы можете столкнуться. Необходимо объединить принцип «смотреть вперед и рассуждать в обратном порядке» с опытом, который поможет вам оценить промежуточные позиции, достигнутые к концу периода предварительных расчетов. Вы сможете добиться успеха только благодаря такому синтезу науки под названием «теория игр» и искусства ведения конкретной игры, а не с помощью каждого из этих элементов в отдельности.

Мыслить за двоих

Стратегия игры в шахматы иллюстрирует еще один важный аспект метода обратных рассуждений: вы должны вести игру с точки зрения обоих игроков. Просчитать лучший ход в сложной игре очень трудно, но еще труднее предвидеть, что сделает другой игрок.

Если бы у вас действительно была возможность просчитать все возможные ходы и контрходы и то же самое мог бы сделать другой игрок, то вы могли бы заранее договориться о том, чем завершится игра. Но поскольку ваши возможности анализа ограничены несколькими ветвями дерева игры, другой игрок может видеть то, чего вы не видите, или упустить то, что очевидно для вас. Как бы там ни было, ваш соперник может сделать ход, которого вы не предвидели.

Для эффективного применения правила «смотреть вперед и рассуждать в обратном порядке» необходимо предвидеть, что сделает на самом деле другой игрок, а не то, что сделали бы на его месте вы. Проблема состоит в том, что, когда вы пытаетесь встать на место другого игрока, очень трудно и даже невозможно забыть о том, в какой ситуации находитесь вы сами. Вы слишком много знаете о том, что планируете сделать на следующем этапе игры, и вам трудно не поддаваться влиянию этих знаний, когда вы анализируете игру с точки зрения другого игрока. Это объясняет, почему в шахматах (или в покере) никто не играет сам с собой: невозможно блефовать или сделать неожиданный ход против себя самого.

У этой проблемы нет идеального решения. Пытаясь поставить себя на место другого игрока, вы должны знать, что знает он, и не знать о том, чего он не знает. Цели другого игрока должны стать вашими целями, а не соответствовать вашим ожиданиям по этому поводу. На практике компании, которые пытаются просчитать ходы и контрходы конкурентов в том или ином сценарии развития бизнеса, нанимают сторонних специалистов на роль другой стороны. Так они могут быть уверены в том, что их партнерам по игре известно не так уж много. Во многих случаях полезнее всего выделить те ходы соперника, которых вы не ожидали, и проанализировать, что привело к такому результату, с тем чтобы впоследствии можно было либо попытаться избежать такого развития событий, либо способствовать ему.

В заключение этой главы вернемся к Чарли Брауну и его попыткам решить вопрос, бить или не бить по мячу. Этот вопрос стал настоящей проблемой для футбольного тренера Тома Осборна в последние минуты борьбы его команды за звание чемпиона. Мы считаем, что он тоже принял неправильное решение. Метод обратных рассуждений поможет нам понять, в чем он ошибся.

Учебный пример: история о Томе Осборне и «Апельсиновом Кубке» 1984 года

В 1984 году состоялся матч кубка по студенческому американскому футболу Orange Bowl («Апельсиновый кубок») между командой Nebraska Cornhuskers («Кукурузники Небраски»), не потерпевшей ни одного поражения, и командой Miami Hurricanes («Ураганы Майами»), которая проиграла только один матч. Поскольку накануне финального матча результаты команды Небраски были лучше, ей достаточно было сыграть вничью, чтобы завершить сезон, заняв первое место.

В начале четвертого периода команда Небраски проигрывала со счетом 31:17. Затем Cornhuskers начали сокращать разрыв. Они заработали тачдаун, после чего счет стал 31:23. Тренеру команды из Небраски Тому Осборну предстояло принять важное стратегическое решение.

В студенческом футболе команда, которая зарабатывает тачдаун, получает право продолжить игру с линии, расположенной в 2,5 ярдов от очковой зоны. У команды есть два варианта дальнейших действий: либо доставить мяч в очковую зону (забежав в нее или передав пас игроку, который уже находится в ней) и заработать еще 2 очка, либо применить менее рискованную стратегию, забив гол – это дает одно дополнительное очко.

Тренер Осборн выбрал более безопасную стратегию, и команда Небраски забила гол, заработав одно очко. Теперь счет был 31:24. Команда Cornhuskers продолжала сокращать разрыв. В последние минуты матча команда заработала последний тачдаун, еще более сократив разрыв: счет стал 31:30. Команде Небраски достаточно было заработать еще одно очко, чтобы выиграть матч и получить титул чемпиона. Но такая победа не принесла бы команде истинного удовлетворения. Осборн понимал: для того чтобы добиться эффектной победы, команда должна выиграть этот матч.

Игроки Cornhuskers вступили в борьбу за победу, пытаясь добиться перевеса в два очка. Ирвин Фриар получил мяч, но не смог доставить его в очковую зону соперника. Команды Майами и Небраски завершили тот год с равными результатами. Но поскольку команда Майами победила Небраску в финальном матче, именно эта команда заняла первое место в турнирной таблице.

Поставьте себя на место тренера Осборна. Вы смогли бы добиться большего?

Анализ примера

Многие болельщики обвиняли Осборна в том, что он попытался добиться победы, вместо того чтобы довольствоваться ничьей. Но нас интересует не этот вопрос. Осборн был готов пойти на риск, чтобы одержать победу, но он сделал это неправильно. Он добился бы большего, если бы его команда сначала попыталась заработать два очка, доставив мяч в очковую зону. Если бы удалось это сделать, команда могла бы попытаться забить гол и получить еще одно очко; в случае неудачи следовало бы сделать еще одну попытку заработать два очка после тачдауна.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Комментарии

    Ничего не найдено.