Невероятный иммунитет. Как работает естественная защита вашего организма - Дэниэл М. Дэвис Страница 7
Невероятный иммунитет. Как работает естественная защита вашего организма - Дэниэл М. Дэвис читать онлайн бесплатно
Ознакомительный фрагмент
Джейнуэй как раз и разглядел, что все не так просто. В частности, он предсказал существование рецепторов (он назвал их образ-распознающими), которые не формируются случайно и затем отсеиваются, а имеют неизменные очертания, благодаря которым эти рецепторы способны соединяться с конкретными микробами или зараженными клетками (точнее, с молекулярными последовательностями, которые есть только у микробов или у больных клеток) [34]. Поскольку такой способ определения микробов иммунными клетками представился Джейнуэю гораздо более простым, чем сложный процесс производства иммунных клеток с рецепторами, имеющими какую попало форму, а затем уничтожения тех, что способны противодействовать здоровым клеткам, ученый предположил, что рецепторы с неизменными очертаниями, вероятно, развились в первую очередь чтобы защищать организм от болезни, и лишь позже, когда жизнь на Земле усложнилась, развилась более затейливая иммунная система, в которой возникли Т- и В-клетки.
Более простая система из образ-распознающих рецепторов фиксированной формы, которую предвидел Джейнуэй, образует часть так называемого врожденного иммунитета — в отличие от другой стороны нашей иммунной защиты, которая существует за счет памяти о пережитых инфекциях: это приобретенный иммунитет. Понятие «врожденный иммунитет» уже было в употреблении до Джей- нуэя — им описывали быстродействующие механизмы защиты, обеспечиваемые кожей, слизью и мгновенными действиями иммунных клеток, устремляющихся к порезу или ране, однако в учебниках этому предмету уделяли всего несколько страниц, в том числе — и в учебнике-бестселлере авторства самого Джейнуэя [35]. Революционными мысли Джейнуэя оказались в том, что он, по сути, предложил новую миссию иммунной системы. До Джейнуэя raison d’être [36] иммунной системы сводили к отклику на то, чего прежде в теле не было. Однако Джейнуэй объявил, что иммунная система обязана откликаться на то, чего прежде в теле не было — и оно должно быть микробное или вирусное.
Теперь уже, задним числом, понятно вот что: необходимо, чтобы иммунная система не просто откликалась на то, чего в теле прежде не было. Пища, безвредные кишечные бактерии или пыль в воздухе — не часть человеческого тела, но никакой угрозы не представляют и не должны вызывать действие иммунной системы. Но, как сказал в 1930 году Джордж Бернард Шоу, «наука неспособна решить одну задачу, не поставив при этом еще десять» [37]. Даже если оставить в стороне самую крупную неувязку, с которой столкнулись соображения Джейнуэя, — недостаток экспериментальных данных в поддержку этих соображений, — имелась и теоретическая нестыковка: микробы и вирусы стремительно размножаются. Скорость их размножения не умещается в голове. Одна-единственная зараженная вирусом человеческая клетка способна произвести сотню новых вирусных частиц. Это означает, что всего три экземпляра вируса, пройдя четыре цикла воспроизведения — примерно за несколько дней, — приведут к 300 миллиардам новых вирусных частиц [38]. И так дело обстоит не только с вирусами: в оптимальных условиях бактерии делятся каждые двадцать минут, то есть одна бактерия способна произвести пять миллиардов триллионов (5 × 1021) бактерий всего за день — примерно столько звезд во Вселенной [39]. На практике микробы в человеческом теле в таких масштабах размножаться неспособны, потому что для этого потребовался бы неограниченный объем ресурса, но тем не менее популяция микробов стремительно достигает громадных размеров — гораздо быстрее, чем мы со своими двумя жалкими отпрысками в расчете на семейную пару, за целую жизнь [40]. Это подводит нас к ключевой трудности, возникающей в связи с соображениями Джейнуэя: всякий раз, когда микроб размножается, у него в генах происходят случайные перемены — мутации, — и из-за них микроб с немалой вероятностью или даже неизбежно теряет молекулярные характеристики, замеченные нашей иммунной системой. Иными словами, в целой популяции вирусов или бактерий некоторые чисто случайно — потому что их очень много — окажутся с генетическими отличиями, из-за которых изменится та часть микроба, с которой образ-распознающий рецептор должен связываться. Микробы, у которых нет «молекулярного образа», избегут распознания иммунной системой и бодро размножатся.
Джейнуэй это понимал и предположил, что «распознаваемый образ должен быть результатом комплексного исключительного [процесса] внутри микроорганизма» [41]. Иначе говоря, узнаваемая структура микроба должна быть чем-то настолько исключительно важным для его жизнедеятельности, что изменить ее было бы столь же исключительно трудно — если вообще возможно. У Джейнуэя были данные о том, что у микробов такие особенности есть — и насущно необходимые для их выживания, и уязвимые для атаки: пенициллин действует как раз благодаря этому. Когда бактерия делится, ей нужно выстроить клеточную стенку, облекающую две дочерние клетки. Вот что важно: процесс этот настолько сложный, что бактерия не запросто способна его изменить. Пенициллин действует, вмешиваясь на последней стадии этого процесса. В результате нет такой простой генетической мутации, какая позволила бы бактерии увернуться от действия пенициллина. Да, бактерия способна стать стойкой к антибиотику, выстраивая клеточную стенку совершенно иначе, но это непросто, а потому пенициллин остается действенным против громадного диапазона микробов: он связывается с белковыми молекулами бактерий, занятыми в жизненно важном и сложном процессе.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Комментарии