История математики - Ричард Манкевич Страница 27

Книгу История математики - Ричард Манкевич читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

История математики - Ричард Манкевич читать онлайн бесплатно

История математики - Ричард Манкевич - читать книгу онлайн бесплатно, автор Ричард Манкевич

Джордж Беркли. Аналитик (1734) [17]

Давайте внимательно присмотримся к проблеме, за которую взялся Ньютон. Если мы возьмем точку на кривой и пожелаем определить наклон касательной в этой точке, мы можем выбрать вторую точку, близкую к первой, и соединить эти две точки прямой. Мы также можем построить прямоугольный треугольник, в котором эти две точки находятся на концах гипотенузы. Отношение двух других сторон треугольника дает нам наклон линии, соединяющей точки. Если мы представим себе, что вторая точка медленно перемещается в сторону первой, мы сможем увидеть, что по мере того, как наш треугольник становится все меньше и меньше, наклонная линия становится все более похожей на касательную. Если эти две точки встретятся, мы увидим касательную, а треугольник исчезнет, и две стороны, которые давали нам числовое значение угла наклона, будут равны нулю. В таком случае мы имеем соотношение двух нулей, которое и дает нам ответ! На языке Ньютона наше конечное соотношение исчезающе малых величин — реальная величина. Таким образом, прочность метода исчисления была основана на уверенности самого Ньютона, а широкое распространение было обеспечено его широкой применимостью. Однако сомнения относительно правильности основ метода все же сохранялись, и впоследствии ученые возвратились к проблеме вычисления бесконечно больших и бесконечно малых величин. Вскоре после смерти Ньютона философ Джордж Беркли (1685–1753) в своей работе «Аналитик» яростно напал на дифференциальное и интегральное исчисления, выдвигая на первый план логические проблемы этого метода, о которых математики были отлично осведомлены. Он набросился на теорию Ньютона с яростным религиозным фанатизмом, обвинив математиков в ереси за то, что они верили в «призраки усопших величин».

Готфрид Вильгельм Лейбниц (1646–1716) родился в Лейпциге, там же он изучал богословие, право, философию и математику. Университет отказал ему в докторской степени по законоведению, потому что ученый был слишком молод — ему было всего двадцать лет, так что защищать диссертацию Лейбниц отправился в Альтдорф-Нюрнберг. После получения степени он отказался от предложения преподавать право и стал советником, историком, библиотекарем и дипломатом на службе у герцога Эрнеста-Августа Брауншвейг-Люнебургского (Ганновер). О нем нередко говорят как о последнем великом универсале, который особенно интересовался логикой и созданием основ всеобщего языка. Возможно, именно поэтому языком счисления, который используется сегодня, мы в значительной степени обязаны Лейбницу. Ему принадлежат термины «дифференциальное исчисление» и «интегральное исчисление», равно как запись dy/dx и dx. Дипломатическая должность давала Лейбницу возможность путешествовать. В 1613 году он посетил Лондон, где стал членом Королевского общества. А в 1676 году ученый вернулся туда, чтобы продемонстрировать новую механическую вычислительную машину. Во время этого визита он не был знаком с Ньютоном, но позднее историки науки много спорили о том, мог ли тогда Лейбниц прочитать «Анализ…». Эти два математика много переписывались, обмениваясь мнениями относительно бесконечного ряда.

Хотя исчисление Лейбница также выросло из анализа рядов, его вид был в значительной степени иным: он увлекся суммированием бесконечно малых величин. Будучи в Париже, он поставил задачу вычисления суммы обратных величин треугольных чисел (треугольное число — это число кружков, из которых можно составить равносторонний треугольник). Последовательность треугольных чисел Tn для n = 0, 1, 2… начинается так: 0,1, 3, 6,10,15…, выраженных общей формулой 2/[n(n+1)]. Он очень хитроумно переписал это как разницу между двумя членами, то есть 2 [1/n — 1/(n+1)]. Просто выписав первые несколько элементов ряда, он увидел, что все члены ряда взаимно уничтожаются за исключением первого и последнего. Увеличивая сумму до бесконечного числа элементов, Лейбниц получил ответ 2. Ученый рассмотрел много других рядов и постепенно научился определять, сходится он или расходится. Тогда он понял, что проблема обнаружения касательной к кривой сводится к вычислению отношения разницы в ординатах и абсциссах (значений х и у), в то время когда они становятся бесконечно малыми величинами, и квадратуры зависят от суммы ординат или бесконечно узких прямоугольников, из которых состоит область, располагающаяся под кривой. В случае с числовыми рядами суммы и разности были инверсиями друг друга. То же самое получалось в задачах о касательной и квадратуре. Все это основывается на характеристиках бесконечно малого треугольника, того самого, который Ньютон описал как «соотношение бесконечно малых величин». Ключевая концепция Лейбница заключалась в том, что дифференциал dx — бесконечно малое изменение значения х. Для функции у = ƒ(х) градиент вычисляется как dy/dx, а квадратура — как ∫ydx. Обозначение интеграла может символизировать утверждение, что это сумма прямоугольников со сторонами у и dx. Первые рукописи Лейбница датируются 1675 годом, а после небольшого изменения нотации он издал свои результаты в статьях. Первая вышла в 1684 году, а вторая — в 1686-м, обе напечатали в журнале «Acta eruditorum», соиздателем которого был сам Лейбниц. В них можно найти общеизвестные теоремы дифференциального и интегрального исчислений, включая фундаментальную теорему, что дифференцирование и интегрирование — прямо противоположные процессы. Лейбниц подчеркнул: новое исчисление дает универсальный алгоритм для решения задачи касательной и квадратуры в случае с целым диапазоном функций, включая трансцендентные (термин, придуманный Лейбницем для обозначения функций типа sin х и In х), которые могут быть выражены как бесконечные степенные ряды, но не представляют собой решения алгебраических уравнений.

Результаты, полученные Лейбницем, аналогичны тем, которые отказался опубликовать Ньютон. Возникший спор о приоритете в изобретении дифференциального и интегрального исчислений омрачил последние годы жизни обоих ученых. Если говорить о датах публикаций, первое издание «Начал» вышло в 1687 году, уже после статей Лейбница в «Acta eruditorum». Ньютон послал экземпляр «Начал» Лейбницу, полагая, что тот находится в Ганновере. Лейбниц, будучи в Италии, прочитал обзор книги в 1689 году в «Acta eruditorum» и, основываясь на этом обзоре, написал статьи по механике и оптике, в которых, конечно, использовались достижения Ньютона. Многие европейцы приписывали ему открытие дифференциального и интегрального исчислений лишь благодаря успеху его предшествующих статей, опубликованных на континенте. В 1699 году в работе малоизвестного математика, представленной Королевскому обществу, упоминалось, что Лейбниц позаимствовал свои идеи у Ньютона. Последовал жесткий ответ. Лейбниц закусил удила. Он использовал «Acta eruditorum», в то время как Ньютон опирался на поддержку Королевского общества, создавшего целый комитет, чтобы тщательно изучить этот вопрос. В 1705 году в «Acta eruditorum» был опубликован неблагоприятный обзор последней публикации Ньютона, а в 1712 году комитет Королевского общества принял решение, что именно Ньютон был первым изобретателем дифференциального и интегрального исчислений. В 1726 году, после смерти Лейбница, Ньютон удалил из третьего издания «Принципов» все ссылки на Лейбница. Если бы Ньютон открыто и полностью опубликовал свои «Принципы» еще в 1669 году, возможно, неприятных баталий можно было бы избежать. Британцы придерживались ньютоновых флюксий и флюентов вплоть до начала XIX столетия, но в других странах Европы дифференциальное и интегральное исчисления развились в невероятно мощный математический аппарат именно на языке Лейбница.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Комментарии

    Ничего не найдено.