Как работает вселенная. Введение в современную космологию - Сергей Парновский Страница 8

Книгу Как работает вселенная. Введение в современную космологию - Сергей Парновский читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Как работает вселенная. Введение в современную космологию - Сергей Парновский читать онлайн бесплатно

Как работает вселенная. Введение в современную космологию - Сергей Парновский - читать книгу онлайн бесплатно, автор Сергей Парновский

Ознакомительный фрагмент

Следует отметить, что плотность энергии включает энергию покоя, которая очень велика из-за коэффициента с2. Насколько велика? Переформулируем этот вопрос: если бы мы рассматривали обычный воздух, то какое давление он бы имел при значении w = 1? При стандартных условиях воздух имеет плотность 1,23 кг/м3. Умноженная на квадрат скорости света, она дает плотность энергии около 1017 Дж/м3, что соответствует давлению 1017 Па. Таким образом, мы должны были бы сжать воздух до 1012 атмосфер [24], чтобы сделать его уравнение состояния похожим на уравнение с параметром w = 1. Такое давление в пределах Солнечной системы встречается только в центре Солнца, но плотность вещества там также значительно выше, около 1,6×105 кг/м3. Таким образом, можно смело положить w = 0 для обычной барионной материи. Такой вид материи в космологии называется холодной или пылевидной материей.

С точки зрения ОТО уравнение состояния материи среди прочего определяет и то, как она участвует в гравитационном взаимодействии. В этом ОТО отличается от классической гравитации Ньютона, в которой давление не влияет на силу гравитационного взаимодействия. Определим теперь, как различные типы материи взаимодействуют гравитационно.

1.3.1. Барионная материя

Для барионной материи это было сделано в конце XVIII в. Генри Кавендишем. Результаты его эксперимента были опубликованы в 1798 г. в «Философских трудах Королевского общества» в Лондоне, ведущем научном журнале того времени, и считаются важной вехой в истории физики. Цель эксперимента состояла в том, чтобы определить среднюю плотность Земли, что непосредственно переводится в задачу оценки гравитационной постоянной. Кавендиш измерял силу гравитационного взаимодействия между двумя парами свинцовых шаров, при этом изменялись как массы шаров, так и расстояния между ними. Его экспериментальная установка использовала новое хитроумное изобретение того времени – крутильные весы. Та же идея была использована несколько лет спустя Шарлем Огюстеном де Кулоном для измерения силы электростатического взаимодействия. Однако Кавендиш решал гораздо более сложную задачу в связи с существенно более слабой силой гравитационного взаимодействия. Ему удалось измерить силы на уровне 10-7 Н, что для того времени было беспримерным достижением. Оценка гравитационной постоянной, полученная Кавендишем, отличается от современной лишь на 1 %, а точность измерения была улучшена лишь столетие спустя. Он также подтвердил экспериментально закон всемирного тяготения Ньютона.

Но это подтверждение работает только для обычной барионной материи в привычных нам условиях, т. е. в случае, когда гравитационные поля являются слабыми, а скорости тел намного меньше скорости света в вакууме. Физики изучали законы ОТО и вычислили величину силы гравитационного взаимодействия в случае слабого гравитационного поля (гравитационное поле на поверхности Солнца считается слабым). Она немного отличается от той, которая следует из закона всемирного тяготения Ньютона. Разница заключается в том, что мы должны заменить массу притягивающего тела m выражением m + 3pV/c2, или, другими словами, ввести дополнительный множитель 1 + 3w в выражение для силы притяжения тел. Эта замена известна как ньютоновской предел ОТО.

В реальном эксперименте Кавендиш измерял силу притяжения свинцовых шаров (которые, как мы уже знаем, имеют параметр w = 0), но нет никаких причин, почему мы не можем проделать подобный мысленный эксперимент с другими типами материи. Для начала заменим один из шаров на сосуд, заполненный воздухом при обычных условиях. Сосуд этот невесом и нужен только для удержания газа. В этом случае мы получаем силу притяжения, которая будет сильнее примерно в (1+3×10–12) раз по сравнению с притяжением двух свинцовых шаров из-за ненулевого, но очень малого значения w. Если бы мы использовали вместо воздуха немного вещества из солнечного ядра, мы получили бы усиление притяжения примерно на семь миллионных долей.

1.3.2. Излучение

Наибольшее увеличение притяжения было бы достигнуто в опытах с сосудом, наполненным светом или другим электромагнитным излучением, которое имеет максимально возможное значения w, равное 1/3. Идея давления света была предложена Иоганном Кеплером еще в 1619 г. Соотношение между плотностью энергии и давлением света было теоретически определено Джеймсом Максвеллом в 1862 г. и подтверждено в 1899 г. в опытах Петра Лебедева по измерению давления света, которые стали окончательным экспериментальным доказательством справедливости уравнений Максвелла. Сила притяжения в этом случае была бы вдвое сильнее, чем для барионной материи, из-за сомножителя (1 + 3×1/3 = 2) – вот откуда берется множитель 2 в формуле для угла отклонения света в ОТО [25].

1.3.3. Темная энергия и антигравитация

Но кто сказал, что давление должно быть положительным? По определению, давление – это сила на единицу площади поверхности. Положительное давление означает, что эта сила действует наружу, а отрицательное – что она действует внутрь. Следует отметить, что ситуация, когда внешнее давление сжимает сосуд, не считается отрицательным давлением. Отрицательное давление встречается и в обычных условиях, например вследствие закона Бернулли, когда жидкость протекает через трубу с высокой скоростью (это главная причина, по которой самолет может летать) или когда вращается капилляр, заполненный жидкостью. Тем не менее во всех этих ситуациях отрицательные давления небольшие, исчезающе малые по сравнению с величиной ρc2. В современной космологии мы имеем дело со средами, в которых отрицательное давление сравнимо с ρc2.

Когда газ с положительным давлением расширяется в цилиндре с поршнем, он выполняет работу и теряет энергию. Благодаря первому закону термодинамики его плотность падает. Когда мы помещаем среду с отрицательным давлением в цилиндр с поршнем, она, расширяясь, получает энергию, и ее плотность может как уменьшаться, так и увеличиваться.

В следующей главе мы вводим так называемую космологическую постоянную, предложенную Эйнштейном. Она может рассматриваться как среда с плотностью энергии и давлением, сохраняющими свою величину при космологическом расширении. Давление отрицательно и соответствует уравнению состояния w = –1. Это именно тот тип среды, о котором мы говорили: она обладает отрицательным давлением и, следовательно, получает энергию при расширении Вселенной. Общий баланс энергии приводит к тому, что плотность энергии не меняется при расширении. Но нет уверенности в том, что мы имеем дело именно с космологической постоянной, а не с какой-то средой с близкими свойствами, в которой баланс энергии все-таки нарушается. Если среда при расширении приобретет немного меньше энергии, ее плотность будет уменьшаться, а если она получит больше энергии, то ее плотность будет возрастать. Это обобщение идеи космологической постоянной называется темной энергией, и она будет обсуждаться в главе 5.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Комментарии

    Ничего не найдено.