Мировая энергетическая революция. Как возобновляемые источники энергии изменят наш мир - Владимир Сидорович Страница 8

Книгу Мировая энергетическая революция. Как возобновляемые источники энергии изменят наш мир - Владимир Сидорович читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Мировая энергетическая революция. Как возобновляемые источники энергии изменят наш мир - Владимир Сидорович читать онлайн бесплатно

Мировая энергетическая революция. Как возобновляемые источники энергии изменят наш мир - Владимир Сидорович - читать книгу онлайн бесплатно, автор Владимир Сидорович

Ознакомительный фрагмент

В то же время достаточно высока вероятность технологических прорывов и в данном направлении, которые могут привести к сокращению удельного потребления серебра либо к полному отказу от него в пользу, например, меди.

Экология солнечного электричества

Давайте посмотрим на экологическую сторону солнечной энергетики. Электричество, производимое с помощью солнца, не является «климатически нейтральным» или абсолютно экологически чистым. Более того, фотоэлектрика оставляет на Земле определенный «углеродный след». «Как же так? – спросите вы. – Опять обман с этой чистой энергией?»

Все познается в сравнении. Сама выработка электроэнергии с помощью фотоэлектрических модулей чистый процесс, но вот их производство – не вполне. Основные компоненты солнечных фотоэлектрических панелей изготавливаются из кристаллического кремния. Производство этих компонентов – энергоемкий процесс, в котором затрачивается до 60 % общего количества энергии, используемой для изготовления солнечных батарей. Точный углеродный след какой-либо конкретной солнечной панели зависит от многих факторов, в том числе источника материалов, расстояния, на которое они должны транспортироваться, и источников энергии, которая используется заводами. Например, в Китае – ведущем производителе солнечных фотоэлектрических панелей – производственный процесс в значительной степени зависит от угольных электростанций, что способствует повышению углеродного следа солнечных панелей, сделанных в Китае.

Тем не менее выбросы, связанные с фотоэлектрикой, в десятки раз меньше, чем у газовой и, тем более, угольной генерации, – всего от 15,8 до 38,1 г CO2 на киловатт-час производимой энергии [54]. Для китайских модулей, правда, исследователи предлагают умножать данный показатель на коэффициент 1,3–2,1.

Кроме того, поскольку солнечная энергетика замещает традиционную генерацию на основе ископаемого топлива, можно подсчитать, к какому сокращению вредных выбросов это приводит. Установленные к концу 2013 г. солнечные электростанции производят примерно 160 ТВт·ч электроэнергии в год, что обеспечивает сокращение выбросов CO2 на 140 млн т в год [55].

Энергоемкость производства солнечных модулей позволяет скептикам высказывать сомнения в окупаемости оборудования с энергетической точки зрения. Мол, в производстве солнечной панели сжигается столько энергии, сколько данная панель никогда не выработает. Это ошибочная точка зрения, и срок энергетической окупаемости (energy payback time) солнечных модулей в сравнении с жизненным циклом модуля на сегодняшний день чрезвычайно мал. Он составляет 0,68–1,96 года в зависимости от условий производства и эксплуатации [56], притом что современные производители обычно гарантируют 25-летнюю работу солнечных модулей с сохранением минимум 80 % исходной мощности.

Производство фотоэлектрических панелей связано со сложными химическими процессами, в результате которых может происходить загрязнение окружающей среды не только посредством энергетических затрат и соответствующих выбросов в атмосферу, но и, так сказать, напрямую.

В принципе процесс производства фотоэлектрических модулей во многом схож с производством полупроводников, используемых в компьютерах и электронике. Да, здесь применяются разнообразные вредные вещества: хлористоводородная и серная кислота, азотная кислота, фторид водорода, ацетон и т. п. При производстве должны соблюдаться соответствующие требования по охране труда и окружающей среды.

Экологический вред производства солнечных модулей часто преувеличивается. Например, некоторые критики указывают на содержание в некоторых панелях кадмия, который является чрезвычайно токсичным металлом. При этом забывается, что один стандартный, используемый в шуруповертах и фонарях для дайвинга никель-кадмиевый аккумулятор содержит в 2500 раз больше кадмия, чем тонкопленочный модуль CdTe, а производство киловатт-часа электроэнергии угольной электростанцией приводит к выбросам кадмия, в 360 раз превышающих потребность модуля CdTe для производства того же киловатт-часа [57].

Вред окружающей среде от того или иного вида генерации может быть оценен в денежном выражении с помощью специальных моделей. По данным исследования ученых Колумбийского университета (2006 г.), экстерналии (external costs) фотоэлектрики составляют €0,015 на выработанный киловатт-час, что сопоставимо с другими возобновляемыми источниками энергии и в 10–40 раз ниже, чем у электростанций, работающих на углеводородном топливе [58]. Более позднее исследование министерства окружающей среды Германии (Umweltbundesamt) показало, что экстерналии солнечной энергетики оцениваются в €0,012 на киловатт-час [59]. Для распределенной солнечной генерации, в особенности при интеграции ее в здания (на крыши и фасады), внешние эффекты должны быть еще меньше, поскольку в таком случае не выводятся из оборота земельные участки и не происходит климатических изменений в районе размещения, как это может происходить при покрытии больших поверхностей суши фотоэлектрическими панелями.

Развитие технологий, уменьшение затрат материалов на единицу мощности, о котором говорилось выше, приведут к дальнейшему сокращению нежелательных «внешних эффектов» солнечной энергетики для окружающей среды, не говоря о повышении ее рентабельности. Солнечная энергетика уже сейчас становится конкурентоспособной по стоимости производства электричества с традиционными видами генерации, также и удельные капитальные затраты опускаются ниже показателей газовых и угольных электростанций, тем более атомных и дизельных. Об экономической стороне развития ВИЭ подробно рассказывается в главе «Экономика возобновляемой энергетики».

Демократичная энергетика

Солнечная энергетика на основе фотоэлектрических модулей является самым «демократичным» видом энергетики. На энергетическом рынке присутствуют солнечные электростанции любых размеров, начиная от нескольких киловатт до сотен мегаватт. В Германии в настоящее время действуют 1,4 млн солнечных электростанций [60], большая часть которых принадлежит частным лицам (установлена на крышах индивидуальных жилых домов), и примерно половина электроэнергии ВИЭ производится гражданами и фермерскими хозяйствами. В Австралии также установлено более миллиона кровельных солнечных электростанций, примечательно, что в 2008 г. этот показатель составлял всего 20 000 [61]. Порядка 14 % зданий в Австралии уже оснащено фотоэлектрическими модулями [62]. Китай, стремительно вырывающийся в мировые лидеры солнечной энергетики, усиленно продвигает распределенную генерацию. В 2015 г. там планируется ввести в эксплуатацию втрое больше мощностей распределенной солнечной генерации, чем в 2014 г., при этом минимум 3,15 ГВт мощностей должно быть расположено на крышах зданий [63].

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Комментарии

    Ничего не найдено.