Легко ли плыть в сиропе. Откуда берутся странные научные открытия - Сергей Комаров Страница 6
Легко ли плыть в сиропе. Откуда берутся странные научные открытия - Сергей Комаров читать онлайн бесплатно
Ознакомительный фрагмент
Между прочим, этот вопрос волнует не только комаров – прогресс робототехники настолько стремителен, что в ближайшем будущем можно ожидать массового производства миниатюрных летающих роботов, которые будут помогать солдатам на поле битвы, а спасателям – при поиске жертв в завалах. Очевидно, что такое чудо техники, размером как раз с некрупное насекомое, должно уметь летать во время дождя. Но как? Может быть, комар обладает датчиками, которые позволяют ему обнаружить воздушную опасность и изменить траекторию полета? Может, и роботов нужно оснастить такими датчиками для решения проблемы?
Для поиска ответа исследователи соорудили пластиковую емкость, в которую посадили несколько комаров, настроили высокоскоростную видеокамеру, а затем стали имитировать дождь с помощью душа. Для контроля они впоследствии провели и полевые испытания, изучив полет комаров, живущих на воле. Как оказалось, насекомое не обладает феноменальной чувствительностью к приближающейся сверху опасности и не уворачивается от капель, а, напротив, встречает удар судьбы без малейшего сопротивления. Это его и спасает, наряду с малой массой и крепостью хитиновой оболочки – наружного скелета. "Сила удара зависит от силы сопротивления. Комар же, попав на нижний край капли, к ней прилипает и начинает падать вниз", – поясняет аспирант Эндрю Дикерсон, непосредственно проводивший наблюдения. А что же дальше? Ведь падая со скоростью капли, можно и в землю врезаться – тогда уж точно останется одно мокрое место. Для своего спасения комар проявляет полную непотопляемость: загребая длинными лапками и крыльями, он переползает с нижнего края капли на верхний и взлетает, чтобы снова продолжить лавирование между струйками дождя.
Раз уж речь зашла о комарах, немного отвлечемся и попробуем поискать ответ на вопрос: может ли современная технология помочь в борьбе с этими надоедливыми насекомыми? Конечно, химия снабдила нас таблетками, создающими отпугивающий комаров дым, биология придумала ловушки, завлекающие комаров в свою утробу всякими приятными для них запахами вроде аромата человеческого пота. Однако есть тут неприятность: все это оружие, так сказать, массового поражения. Оно действует на всех комаров, даже тех, которые совершенно не угрожают человеку; страдают от него и невинные добродушные насекомые, которые, может быть, и не покусились бы на человеческую кровь. Тем более что половине из них кровь-то как раз и не нужна – комары-самцы обходятся без нее. И вот для изготовления такого избирательного оружия, соответствующего принципам гуманизма, на помощь приходят физики.
Вспомним Стратегическую оборонную инициативу президента США Рональда Рейгана, знаменитую СОИ, названную еще "программой звездных войн". Суть этой инициативы 1980-х годов – размещение в околоземном пространстве лазеров, которые станут воздействовать на баллистические межконтинентальные ракеты, вышедшие за пределы атмосферы, меняя их траекторию, и таким образом обеспечат полную защиту от ядерного нападения. Но ведь это именно то, что нужно: найти комариху в момент атаки, сбить ее и только ее. И США, и СССР на эту программу потратили много денег, но результата не получили: уж слишком мощный лазер требовался для успешной работы системы. Но вот американский физик и инженер Джордин Кэр, занимавшийся лазерными двигателями, предложил-таки уже в XXI веке использовать давние наработки и организовать систему противомоскитной обороны [15].
Комар – не ракета, его вес и скорость гораздо меньше. Поэтому сбить насекомое можно недорогим лазером, который продается чуть ли не в магазине. Еще для этой системы нужны также имеющиеся на рынке набор оптических элементов и акустические датчики: первые фокусируют луч, а вторые наводят его на источник ненавистного комариного писка. По мнению Кэра, чувствительность системы столь велика, что она может стрелять прицельно в комарих-кровососок, безобидных же комаров лазерный луч не коснется: тембр писка у них различается. Не станут объектом упреждающей атаки и жужжащие насекомые – так удается сэкономить немало энергии. Более того, система распознаёт человека и всяких домашних животных: даже если они окажутся на линии прицеливания, лазерный луч не причинит им никакого вреда.
Это предложение отнюдь не было воспринято как очередная футуристическая фантазия: ему оказали поддержку финансисты из компании Intellectual Ventures, которую основал бывший главный технолог компании Microsoft Натан Мирволд. Видимо, окрыленный таким вниманием, Кэр надеялся на расширение проекта и мечтал о подвешенной на аэростате платформе с лазерными пушками, которые прицельно палят по летучим вредителям полей и огородов, защищая таким образом сельхозугодья без вреда для полезных насекомых вроде пчел и шмелей. И всё без единого грамма ядохимикатов!
На наш взгляд, эта работа вполне соответствует уровню Игнобелевской премии, причем сразу по нескольким номинациям – энтомологии, физики и мира. Но Кэру ее почему-то не присудили, впрочем, решения Игнобелевского комитета, равно как и Нобелевского, не всегда находят рациональное объяснение.
Итак, с бегом по воде и пролетом сквозь струйки дождя разобрались. А как насчет плавания в сиропе? Где человек поплывет быстрее – в сладкой воде или в обычной? Ответ на этот вопрос нашли Эдвард Касслер и Брайан Геттельфингер с кафедры химического машиностроения и материаловедения Миннесотского университета, что принесло им, помимо морального удовлетворения от прекрасно выполненной работы, еще и Игнобелевскую премию по химии за 2005 год.
Как отмечают сами лауреаты в своей эпохальной статье [16], один из них принимал участие в отборочных олимпийских соревнованиях по плаванию и там случайно заметил, что в соленой воде плавать легче. К слову сказать, нам этот феномен объясняли где-то в седьмом классе на уроках физики, когда изучали закон Архимеда, но то нам, а бедолагам-американцам до всего приходится доходить своим умом и на собственном опыте.
В соленой воде из-за увеличения плотности растет выталкивающая сила Архимеда, так что на воде держаться действительно легче. Но из этого отнюдь не следует, что в соленой воде легче, а главное, быстрее плыть, чем в пресной, поскольку у соленой воды не только плотность, но и вязкость выше, чем у пресной.
По признанию лауреатов, в их лаборатории шли жаркие, неутихающие дискуссии о влиянии вязкости на скорость плавания. Единства мнений не было – все участники прений разбились на три группы. Большинство, в основном специалисты по динамике жидкостей, утверждали, что человек поплывет медленнее, ведь на преодоление сопротивления более вязкой жидкости нужно тратить больше усилий. Другие возражали: человек при гребке толкается руками, чем создает тягу, стало быть, чем плотнее жидкость, тем более мощным выходит толчок. Третьи же предполагали, что эти эффекты компенсируют друг друга, отчего плавать в соленой воде не легче и не тяжелее, чем в пресной.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Комментарии