Эпигенетика. Как современная биология переписывает наши представления о генетике, заболеваниях и наследственности - Несса Кэри Страница 56
Эпигенетика. Как современная биология переписывает наши представления о генетике, заболеваниях и наследственности - Несса Кэри читать онлайн бесплатно
В ученом мире бытует весьма интересная поговорка: отсутствие доказательства это не то же самое, что доказательство отсутствия. Например, как только в астрономии были изобретены телескопы, способные обнаруживать инфракрасное излучение, ученые смогли открыть тысячи звезд, остававшихся прежде «невидимыми». Эти звезды и раньше были там, но мы не могли быть абсолютно уверены в их существовании, пока не появились инструменты для получения доказательств. В качестве более часто встречающегося примера можно привести сигналы мобильных телефонов. Эти сигналы постоянно окружают нас, но убедиться в этом мы не сможем, если у нас нет мобильного телефона. Иначе говоря, то, что мы находим, в большой мере зависит от того, как мы ищем.
Ученые идентифицируют гены, которые экспрессируются в определенных типах клеток, с помощью анализа молекул РНК. Для этого вся РНК извлекается из клеток, а затем подвергается всестороннему анализу с использованием разнообразных техник, позволяющих создать базу данных всех имеющихся молекул РНК. Когда в 1980-х годах исследователи только начинали определять, какие гены экспрессируются в данных типах клеток, инструментарий, которым они располагали, был относительно нечувствительным. Их приборы были также предназначены для идентификации только молекул мРНК, поскольку именно они считались наиболее важными. Эти методики были хороши для определения активно экспрессирующихся мРНК, но оказывались довольно неэффективными при поиске последовательностей с менее бурной экспрессией. Еще одним недостатком было то, что программы, применявшиеся для анализа мРНК, были написаны таким образом, что игнорировали сигналы, поступавшие от повторяющейся, то есть «бесполезной» ДНК.
Эти техники хорошо послужили нам профилирования мРНК, которая всех так интересовала, т. е. анализа молекул мРНК, кодирующих белки. Но, как мы уже убедились, они составляют всего лишь около 2 процентов нашего генома. И только тогда, когда новые технологии исследований получили в свое распоряжение резко возросшие мощности компьютеров, мы начали в полной мере осознавать, что в оставшихся 98 процентах, в той самой некодирующей части нашего генома, происходит нечто очень интересное.
Вооружившись усовершенствованными методиками исследований, ученый мир постепенно стал понимать, что в участках генома, не кодирующих белки, на самом деле идут мощные процессы транскрибирования. Сначала они были отметены как некие «транскрипционные помехи». Выдвигались предположения, что существует общий фоновый шум, возникающий как результат экспрессии со всего генома, когда эти участки ДНК периодически продуцируют молекулы РНК, достигающих порога их обнаружения. Согласно этой теории, мы могли выявлять эти молекулы при помощи нового, более чувствительного оборудования, но биологической ценности они собой не представляли.
Словосочетание «транскрипционные помехи» предполагает некое случайное, беспорядочное явление. Однако схемы экспрессии этих некодирующих белки РНК оказались разными для различных типов клеток, а это заставляло предположить, что их транскрипция далеко не случайна [130]. Например, такая экспрессия в больших масштабах была зафиксирована в головном мозге. Теперь мы знаем, что в разных участках головного мозга схемы экспрессии различны [131]. И этот феномен оказывается воспроизводимым, когда мы сравниваем различные регионы мозга разных индивидуумов. А это совсем не то, чего следовало ожидать, если бы эта низкоуровневая транскрипция РНК представляла собой исключительно беспорядочный процесс.
Постепенно становится все более очевидным то, что эта транскрипция с генов, не участвующих в кодировании белков, в действительности является крайне важной для функционирования клеток. Но, как ни странно, мы по-прежнему остаемся в плену лингвистической ловушки собственного изготовления. РНК, продуцируемая в этих областях, РНК, которой прежде мы уделяли настолько пристальное внимание, так и продолжает называться некодирующей РНК (нкРНК). Это довольно неточное наименование, так как на самом деле мы имеем в виду, что это не кодирующая белки РНК. В действительности же нкРНК кое-что кодирует — она кодирует саму себя, функциональную молекулу РНК. В отличие от зрелой мРНК, служащей лишь промежуточным звеном между РНК и белком, нкРНК сама по себе является конечным результатом.
Новое определение «строительного мусора»
Это и есть смена парадигмы. На протяжении 40 с лишним лет молекулярные биологи и генетики сосредоточивались почти полностью на генах, кодирующих белки, и на самих белках. Случались, конечно, и исключения, но мы склонны были рассматривать их как строительный мусор на крыше здания. Наконец наступает тот момент, когда некодирующие РНК стали по праву занимать свое законное место в одном ряду с белками как полностью функциональные молекулы. Другие, но равные по значимости.
Эти нкРНК встречаются по всему геному. Одни из них продуцируются из интронов. Раньше считалось, что сплайсированные от интронов частички мРНК разрушаются клетками. Теперь же представляется более вероятным, что, по крайней мере, некоторые из них (если не большинство) в действительности обрабатываются клеткой и становятся полноправными функциональными нкРНК. Другие накладываются на гены, часто транскрибируемые с противоположной цепочки кодирующей белки мРНК. Третьи присутствуют в областях, где вообще нет кодирующих белки генов.
В предыдущей главе мы познакомились с двумя нкРНК — Xist и Tsix, которые необходимы для подавления хромосомы X. Обе эти нкРНК очень длинные и состоят из нескольких миллионов оснований. По существующим на настоящий момент оценкам, в клетках высших млекопитающих присутствуют тысячи таких молекул, причем более 30 000 «длинных» нкРНК (определяемых как имеющие длину свыше 200 оснований) обнаружено у мышей [132]. Длинные нкРНК могут даже превышать по численности кодирующие белки мРНК.
Как выясняется, помимо участия в подавлении хромосомы X, длинные нкРНК, играют важную роль в импринтинге. Многие области импринтинга содержат участок, кодирующий длинную нкРНК, которая подавляет экспрессию соседних генов. Происходит приблизительно то же, что мы наблюдаем при воздействии Xist. Кодирующие белки мРНК подавляются на копии хромосомы, которая экспрессирует длинную нкРНК. Например, нкРНК под названием Air экспрессируется в плаценте исключительно с унаследованной от самца мыши хромосомы 11. Экспрессия нкРНК Air репрессирует соседний ген Igf2r, но только на той же хромосоме [133]. Этот механизм гарантирует, что Igf2r будет экспрессироваться только с унаследованной от матери хромосомы.
Благодаря нкРНК Air ученые смогли разобраться в том, как эти длинные нкРНК подавляют экспрессию генов. нкРНК остается локализованной в определенной области пучка импринтинговых генов и действует подобно магниту, притягивающему эпигенетический фермент под названием G9a. G9a накладывает репрессирующую метку на белки гистона H3 в нуклеосомах этой области ДНК. Такая гистоновая модификация создает репрессивную хроматиновую среду, подавляющую гены.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Комментарии