Истина и красота. Всемирная история симметрии - Йен Стюарт Страница 53

Книгу Истина и красота. Всемирная история симметрии - Йен Стюарт читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Истина и красота. Всемирная история симметрии - Йен Стюарт читать онлайн бесплатно

Истина и красота. Всемирная история симметрии - Йен Стюарт - читать книгу онлайн бесплатно, автор Йен Стюарт

Это «мнимые» кватернионы вида bi + cj + dk. Геометрически символы i, j, k можно интерпретировать как вращения вокруг трех взаимно перпендикулярных пространственных осей, хотя и здесь есть тонкости: дело в том, что при этом приходится работать в такой геометрии, где полная окружность содержит 720°, а не 360°. Если оставить в стороне этот выверт, можно понять, почему Гамильтон считал кватернионы полезными для геометрии и физики.

Оставшиеся «вещественные» кватернионы вели себя в точности как вещественные числа. Их нельзя было выкинуть вовсе, потому что они имеют тенденцию возникать всякий раз, когда с кватернионами выполняются какие-либо алгебраические вычисления, даже если начать с мнимых кватернионов [43]. Если бы было возможным оставаться исключительно в области мнимых кватернионов, то существовала бы разумная трехмерная алгебра, и первоначальная задача Гамильтона увенчалась бы успехом. Четырехмерная система кватернионов была лучшей из возможных, а естественная трехмерная система, весьма аккуратно в них вложенная, вполне заменяла ту несуществующую чисто трехмерную алгебру.

Гамильтон посвятил остаток жизни кватернионам, развивая их математику и разрабатывая их приложения к физике. Несколько посвященных последователей воздавали хвалы. Они основали школу кватернионистов, а после смерти Гамильтона бразды правления перешли к Питеру Тейту в Эдинбурге и Бенджамину Пирсу в Гарварде.

Другие, однако, недолюбливали кватернионы — частью из-за их искусственности, но главным образом потому, что, по их мнению, нашли нечто получше. Наиболее значительными представителями лагеря несогласных были Герман Грассман из Пруссии и американец Джозайа Уиллард Гиббс, ныне общепризнанные создатели «векторной алгебры». Оба они изобрели полезные типы алгебр в любом числе измерений. В их работах не было ограничений типа четырехмерности или же трехмерности подмножества мнимых кватернионов. Алгебраические свойства этих векторных систем были не столь изящны, как у Гамильтоновых кватернионов. Например, нельзя было делить один вектор на другой. Но Грассман и Гиббс отдавали предпочтение общим работоспособным концепциям, даже если в них отсутствовали некоторые из обычных свойств чисел. Пусть нельзя разделить один вектор на другой, ну и что?

Гамильтон же, сходя в могилу, верил, что кватернионы составляли его самый главный вклад в естественные науки и математику. На протяжении следующей сотни лет мало кто, за исключением Тейта и Пирса, с ним бы согласился, и кватернионы оставались позабытой тихой заводью викторианской алгебры. Если вам требовался пример бесплодной самодовлеющей математики, то кватернионы были пропуском в этот клуб. Даже в университетских курсах чистой математики кватернионы никогда не появлялись; их даже не показывали в качестве курьеза. Согласно Беллу, «глубочайшей трагедией Гамильтона были не алкоголь и не неудачный брак, а его упрямая вера в то, что кватернионы содержат в себе ключ к математике и физике вселенной. История показала, что Гамильтон трагически обманывал себя, когда продолжал утверждать: „Я по-прежнему определенно заявляю, что это открытие представляется мне настолько же важным для середины девятнадцатого столетия, насколько открытие флюксонов было важным для семнадцатого столетия“. Никогда еще великий математик столь отчаянно не ошибался».

В самом деле?

Кватернионы, быть может, развивались не вполне тем спором, какой предначертал Гамильтон, но их значимость растет с каждым годом. Они стали абсолютно фундаментальными для математики, и мы также увидим, что кватернионы и их обобщения играют фундаментальную роль и в физике. Одержимость Гамильтона открыла широкую дорогу современной алгебре и математической физике.

Никогда еще квазиисторик столь отчаянно не ошибался.


Гамильтон, возможно, преувеличивал практическую роль кватернионов и выжимал из них фокусы, к которым они в действительности были малопригодны, но его вера в их важность начинает получать серьезные подтверждения. Кватернионы возымели странную привычку возникать в таких местах, где их появление менее всего ожидается. Одна из причин состоит в их единственности. Их можно охарактеризовать несколькими разумными и относительно простыми свойствами — некоторой выборкой из «законов арифметики», опустив всего один важный закон, — и они составляют единственную математическую систему, обладающую этим списком свойств.

Это утверждение требует пояснений.

Единственная числовая система, с которой знакома большая часть населения нашей планеты, — это вещественные числа. Их можно складывать, вычитать, умножать и делить, причем результат всегда будет вещественным числом. Разумеется, деление на нуль не допускается, но помимо этого необходимого ограничения можно применять весь набор арифметических операций, никогда при этом не покидая систему вещественных чисел.

Математики называют такую систему полем. Имеется много других полей, таких как поле рациональных чисел и поле комплексных чисел, но поле вещественных чисел является специальным. Это единственное поле с еще двумя свойствами: оно упорядочено и полно.

«Упорядочение» означает, что числа выстраиваются в соответствии с линейным порядком. Вещественные числа расположены вдоль прямой линии — отрицательные слева, а положительные справа. Имеются и другие упорядоченные поля, например поле рациональных чисел, но в отличие от других упорядоченных полей вещественное поле является также полным. Это дополнительное свойство (полная формулировка которого носит довольно технический характер) ответственно за существование таких чисел, как √2 и π. По сути свойство полноты говорит нам, что бесконечные десятичные дроби имеют смысл.

Можно доказать, что вещественные числа составляют единственное полное упорядоченное поле. Этим и определяется их центральная роль в математике. Они дают единственный контекст, в котором можно выполнять арифметические операции, сравнение «больше чем», а также основные операции анализа.

Комплексные числа представляют собой расширение вещественных за счет включения чисел нового типа — квадратного корня из минус единицы. Но цена за возможность извлекать квадратные корни из отрицательных чисел состоит в потере упорядочения. Комплексные числа являются полной системой, но они заселяют плоскость, а не выстраиваются в единую упорядоченную последовательность.

Плоскость двумерна, а 2 — конечное целое число. Комплексные числа — это единственное поле, которое содержит вещественные числа и имеет конечную размерность (и которое при этом отлично от самих вещественных чисел, имеющих размерность единица). Это говорит о том, что и комплексные числа тоже единственны. Для многих важных целей комплексные числа оказываются единственным средством, которое позволяет добиться желаемого. Их единственность делает их незаменимыми.

Кватернионы возникают при попытке расширить комплексные числа за счет увеличения размерности (оставляя ее, тем не менее, конечной) с сохранением при этом максимально возможного числа законов алгебры. Законы, которые мы хотим оставить, — это обычные свойства сложения и вычитания, большая часть свойств умножения и возможность деления на все, кроме нуля. На этот раз жертву приходится приносить более серьезную; это-то и доставило Гамильтону столько терзаний. Надо выкинуть закон коммутативности умножения. Этот брутальный факт надо просто принять — и двигаться дальше. Когда вы к нему привыкнете, вы зададитесь вопросом, а почему вообще вы ожидали, что закон коммутативности будет выполнен во всех случаях, а одновременно начнете воспринимать тот факт, что он выполнен для комплексных чисел, как небольшое чудо.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Комментарии

    Ничего не найдено.