Эпигенетика. Как современная биология переписывает наши представления о генетике, заболеваниях и наследственности - Несса Кэри Страница 51

Книгу Эпигенетика. Как современная биология переписывает наши представления о генетике, заболеваниях и наследственности - Несса Кэри читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Эпигенетика. Как современная биология переписывает наши представления о генетике, заболеваниях и наследственности - Несса Кэри читать онлайн бесплатно

Эпигенетика. Как современная биология переписывает наши представления о генетике, заболеваниях и наследственности - Несса Кэри - читать книгу онлайн бесплатно, автор Несса Кэри

Эпигенетика. Как современная биология переписывает наши представления о генетике, заболеваниях и наследственности

Рис. 9.4. Две цепочки ДНК на особом участке хромосомы X могут быть скопированы для создания молекулы мРНК. Две основные цепочки копируются в противоположных по отношению друг к другу направлениях, что позволяет одному и тому же участку хромосомы X производить Xist РНК и Tsix РНК


На том же участке ДНК, где находится Xist, есть еще одна некодирующая РНК длиною около 40 т. п. о. Она частично накладывается на Xist, но располагается на противоположной цепочке молекулы ДНК. Она транскрибируется в РНК в противоположном к Xist направлении и называется антисмысловым транскриптом. Имя ее — Tsix. Внимательный читатель уже успел заметить, что Tsix это тот же Xist в прочтении справа налево, и в этом есть своя неожиданно элегантная логика.

Такое перекрестное расположение Tsix к Xist имеет принципиальное значение для их взаимодействия, но провести подтверждающие это эксперименты необычайно сложно. Причина этого в том, что практически невозможно осуществить мутацию одного из генов, не затронув при этом мутацией его партнера на противоположной цепочке; в этом случае происходит своего рода параллельное поражение. Но, несмотря на это, уже достигнуты существенные успехи в понимании того, как Tsix влияет на Xist.

Если хромосома X экспрессирует Tsix, это предотвращает экспрессию Xist с той же хромосомы. Как ни странно, возможно, именно простым транскрибированием Tsix предотвращается экспрессия Xist, а не самой Tsix нкРНК. Это аналогично работе врезного замка. Если я запираю замок изнутри и оставляю ключ в замочной скважине, то никто не сможет отпереть этот замок снаружи. Мне нет необходимости пользоваться какими-то дополнительными средствами безопасности — оставив ключ в замочной скважине закрытого замка, я пресекаю любые попытки отпереть его с противоположной стороны. Поэтому, если Tsix активирован, то Xist подавлен, и хромосома X активна.

Эта ситуация имеет место в ЭС клетках, где обе хромосомы X активны. Как только ЭС клетки начинают дифференцироваться, одна из их пары перестает экспрессировать Tsix. Это дает возможность экспрессироваться Xist с той же хромосомы X, что и индуктирует ее репрессию.

Одного лишь Tsix, пожалуй, недостаточно для сохранения репрессии Xist. В ЭС клетках белки под названиями Oct4, Sox2 и Nanog привязываются к первому интрону Xist и подавляют его экспрессию [112]. Oct4 и Sox2 были двумя из четырех факторов, которые использовал Шинья Яманака, когда перепрограммировал соматические клетки в плюрипотентные iPS клетки. Более поздние эксперименты показали, что Nanog (названный в честь мифической кельтской земли вечной молодости) также может действовать как перепрограммирующий фактор. Oct4, Sox2 и Nanog активно экспрессируются в недифференцированных клетках, таких как ЭС клетки, но уровни их экспрессии падают, как только клетки начинают дифференцироваться. Когда это происходит в дифференцирующихся женских ЭС клетках, Oct4, Sox2 и Nanog перестают привязываться к интрону Xist. Тем самым снимаются некоторые барьеры для экспрессии Xist. Напротив, когда женские соматические клетки перепрограммируются по методике Яманаки, репрессированная хромосома X восстанавливается. [113]. Единственный другой случай восстановления репрессированной хромосомы X имеет место при формировании первичных половых клеток в процессе развития, и именно по этой причине при возникновении зиготы в ней присутствуют две активные хромосомы X.

Пока еще нет полной определенности в ответе на вопрос, почему репрессия является настолько взаимоисключающим процессом для двух хромосом. Согласно одной из теорий, причины этого нужно искать в том, что происходит при «поцелуе хромосом X». Случается это на том этапе развития, когда уровни Tsix начинают снижаться и уровни факторов Яманаки также идут на спад. Сторонники этой теории утверждают, что в этот момент пара хромосом достигает своего рода компромисса. Вместо того чтобы пополнить недостаточные количества нкРНК и задействовать другие факторы, все связывающие молекулы устремляются на одну хромосому из пары. До конца понять, каким образом это происходит, довольно трудно. Возможно, одна из хромосом в паре просто по чистой случайности несет чуть больше ключевых факторов, чем другая. Это делает ее чуть более привлекательной для определенных белков. Такие структуры могут создаваться в самоподдерживающем режиме, то есть чем большими запасами обладает одна из хромосом на начальной стадии, тем больше запасов она отбирает у конкурентки. Богатые становятся богаче, а бедные — беднее…

Удивительно, как много белых пятен остается в нашем понимании репрессии хромосомы X даже через 50 лет после фундаментальной работы Мэри Лайон. Мы все еще не до конца представляем себе, как Xist РНК обволакивает хромосому, с которой она экспрессируется, или как она собирает все эти негативные репрессивные эпигенетические ферменты и модификации. Так что, возможно, для нас разумнее будет покинуть эти зыбучие пески и вернуться на более твердую почву.

А вернемся мы к одному из утверждений, которое сделали несколько ранее в этой главе: «Как только клетка подавляет одну из пары хромосому X, копия этой самой хромосомы X будет оставаться ингибированной во всех ее дочерних клетках до конца жизни женщины, даже если той посчастливится дожить до столетнего возраста». Откуда мы это знаем? Как мы можем быть настолько уверены, что репрессия хромосомы X остается постоянной в соматических клетках? Сейчас мы имеем возможность проводить определенные генетические манипуляции, чтобы с их помощью показать, как это происходит, например, у мышей. Но задолго до того, как это стало реальным, ученые были совершенно уверены в справедливости этих тезисов. И за эти сведения мы должны благодарить не мышей, а кошек.

Чему можно научиться у эпигенетической кошки

Не просто любых старых добрых кошек, а особенных, черепаховых. Вы, наверное, знаете, чем эти кошки отличаются от всех прочих. Это те самые, на шерсти которых хаотично разбросаны рыжие и черные пятна, располагающиеся иногда на белой подложке. Цвет каждой шерстинки кошек определяется клетками, которые называются меланоцитами — именно они вырабатывают соответствующий пигмент. Меланоциты находятся в коже и развиваются из особых стволовых клеток. Когда меланоцитовые стволовые клетки делятся, их дочерние клетки остаются рядом друг с другом и группируются в маленькие «очажки» клоновых клеток, образованных из одной родительской стволовой клетки.

И вот что удивительно: если у кошки черепаховый окрас, то она обязательно самка.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Комментарии

    Ничего не найдено.