Симпсоны и их математические секреты - Саймон Сингх Страница 5
Симпсоны и их математические секреты - Саймон Сингх читать онлайн бесплатно
Ознакомительный фрагмент
Рейсс и Джин были ключевыми членами команды авторов первого и второго сезонов «Симпсонов», что позволило им включить в эпизоды ссылки на ряд важных математических концепций. Тем не менее математическое сердце «Симпсонов» забилось еще быстрее начиная с третьего сезона, после того как этих двух выходцев из журнала Harvard Lampoon назначили на должности исполнительных продюсеров.
Это стало переломным моментом в истории мультсериала «Симпсоны». Теперь Джин и Рейсс могли не только включать в эпизоды собственные математические шутки, но и нанимать комедийных сценаристов с серьезной математической подготовкой. В последующие годы во время совещаний по редактированию сценариев «Симпсонов» периодически возникала атмосфера, больше напоминающая урок геометрии или семинар по теории чисел, а созданные в итоге эпизоды содержали больше математических аллюзий, чем любой другой сериал за всю историю телевидения.
Фотография членов математического кружка из выпускного альбома школы Роупера за 1977 год. На подписи под ней сказано, что Эл Джин – третий слева ученик во втором ряду, а также что он занял первое и третье место на конкурсе в штате Мичиган. Учителем, который оказал на Джина самое большое влияние, был покойный профессор Арнольд Росс, руководивший летней программой обучения Чикагского университета
Фотографию предоставил Эл Джин
Хотите ли вы знать число π?
Порой в «Симпсонах» упоминаются малоизвестные математические концепции, и с некоторыми из них мы действительно встретимся в следующей главе. Однако в остальных случаях шуточные ситуации, смоделированные Рейссом, Джином и их коллегами в эпизодах сериала, касаются хорошо знакомых многим зрителям математических концепций. Классический пример – число π, неоднократно появлявшееся в мультсериале за прошедших два десятилетия.
На всякий случай напоминаю, что π – это отношение длины окружности к ее диаметру. Для того чтобы составить представление о приблизительном значении числа π, можно нарисовать окружность, а затем отрезать кусок веревки длиной, равной ее диаметру. Если проложить этот кусок веревки по краю окружности, он поместится там немногим более трех раз – точнее говоря, 3,14 раза. Это и есть приблизительное значение числа π. Соотношение между числом π, длиной окружности и диаметром можно описать с помощью следующего уравнения:
длина окружности = π × диаметр
C = πd
Поскольку диаметр окружности в два раза больше радиуса, это уравнение можно записать в таком виде:
длина окружности= 2 × π × радиус
C = 2πr
Пожалуй, это и есть первый маленький шаг, который мы совершаем в детстве при переходе от простой арифметики к более сложным концепциям. Я до сих пор помню свою первую встречу с числом π, настолько она тогда меня потрясла. Математика больше не сводилась исключительно к умножению в столбик и простым дробям; теперь в ней появилось нечто таинственное, элегантное и универсальное: каждый круг в этом мире подчиняется уравнению с участием числа π, от колеса обозрения до фрисби, от лепешки до земного экватора.
Кроме того, помимо вычисления длины окружности, число π можно использовать для расчета площади, которая ограничена этой окружностью:
площадь = π × радиус²
A = πr²
В эпизоде «Человек-пирог» (Simple Simpson, сезон 15, эпизод 19; 2004 год) есть основанная на игре слов шутка, касающаяся приведенного выше уравнения. В этом эпизоде Гомер изображает супергероя по имени Человек-пирог, который наказывает злодеев, бросая им в лицо пирог. И первый его акт возмездия в данном качестве направлен на обидчика Лизы. Свидетелем сцены становится персонаж по имени Дредерик Тейтум, знаменитый бывший боксер из Спрингфилда, который заявляет: «Все мы знаем формулу πr², но сегодня мы говорим: “Пирог – это справедливость”. Я приветствую это».
И хотя шутку включил в сценарий Эл Джин, он неохотно приписывает себе эту заслугу (или, возможно, вину): «Да это же очень старая шутка. Я услышал ее много лет назад. Человек, которого следует поблагодарить за нее, – кто-то из 1820 года».
Джин явно преувеличивает, когда упоминает 1820 год, но слова Тейтума действительно представляют собой новую интерпретацию классической шутки, передаваемой из поколения математиков в поколение. Самая известная ее версия появилась в 1951 году в американском комедийном сериале The George Burns and Gracie Allen Show («Шоу Джорджа Бернса и Грейси Аллен»). В эпизоде под названием «Как девушка-подросток проводит уик-энд» Грейси приходит на помощь юной Эмили, которая жалуется на домашнее задание:
Эмили. Хотелось бы мне, чтобы геометрия была такой же легкой, как испанский язык.
Грейси. Так, может, я тебе помогу? Скажи мне что-нибудь на языке геометрии.
Эмили. Сказать что-нибудь на языке геометрии?
Грейси. Да, давай же.
Эмили. Ну хорошо. Ммм… πr².
Грейси. И этому учат сейчас в школе? πr²?
Эмили. Да.
Грейси. Эмили, пирог круглый. Печенье круглое. Крекеры квадратные.
В основе этой шутки лежит похожее звучание слова pie («пирог») и названия буквы π, что и служит поводом для каламбура. Следовательно, комики должны быть благодарны Уильяму Джонсу за введение символа π. Этот математик XVIII столетия, так же как и многие другие ученые, зарабатывал себе на жизнь уроками в лондонских кофейнях, посетители которых должны были заплатить за вход один пенни. Преподавая в этих так называемых грошовых университетах, Джонс параллельно работал над крупным научным трудом под названием A New Introduction to the Mathematics («Новое введение в математику»). Именно в этой книге он впервые использовал греческую букву π в контексте обсуждения геометрии круга. В итоге появилась почва для новых математических каламбуров. Джонс выбрал символ π, потому что это начальная буква греческого слова περιφερια (периферия), что означает «окружность».
* * *
За три года до появления шутки с числом π в эпизоде «Человек-пирог» авторы «Симпсонов» уже упоминали это число в серии «Пока, пока, зубрила» (Bye, Bye, Nerdie, сезон 12, эпизод 16; 2001 год). Но на этот раз вместо воскрешения старой шутки сценаристы создали совершенно новую, хотя и основанную на одном любопытном случае из истории числа π. Для того чтобы оценить ее по достоинству, сперва необходимо вспомнить значение числа π и то, как оно измерялось на протяжении столетий.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Комментарии