Эпигенетика. Как современная биология переписывает наши представления о генетике, заболеваниях и наследственности - Несса Кэри Страница 4
Эпигенетика. Как современная биология переписывает наши представления о генетике, заболеваниях и наследственности - Несса Кэри читать онлайн бесплатно
Благодаря открытиям Дарвина и Менделя в биологии XIX век стали называть эрой эволюции и генетики; труды Уотсона и Крика принесли XX веку титул эры ДНК, ознаменовавшейся принципиальным пониманием механизмов взаимодействия генетики и эволюции. И вот теперь, в XXI столетии, появилась новая научная дисциплина, эпигенетика, объясняющая то, что мы всегда считали догмой, и преобразующая окружающий нас мир бесконечно разнообразным, удивительным и прекрасным образом.
Мир эпигенетики завораживает и околдовывает. Ему присущи изысканная утонченность и сложность, и в Главах 3 и 4 мы окунемся в глубины молекулярной биологии и попытаемся узнать, что происходит с нашими генами при их эпигенетическом модифицировании. Но подобно многочисленным поистине революционным идеям в биологии, в основе эпигенетики лежат явления настолько простые и элементарные, что они покажутся совершенно самоочевидными любому, кто возьмет на себя труд обратить на них свое внимание. И в Главе 1 мы рассмотрим наиболее важный пример таких явлений. Он представляет собой исследование, с которого началась эпигенетическая революция.
Примечания по терминологии
Существует международная договоренность о том, как следует писать названия генов и белков, и именно ее мы и будем придерживаться в этой книге.
Названия и аббревиатура генов записываются курсивом. Белки, кодируемые генами, записываются обычным шрифтом.
Аббревиатура генов и белков человека записываются заглавными буквами. Для других видов, например мышей, в этих символах обычно только первая буква является заглавной.
Эти правила для гипотетического гена обобщены в следующей таблице:
* чаще всего в современной научной литературе аббревиатура генов записывается только маленькими буквами (прим. научного ред.).
Подобна мерзкой, ядовитой жабе, Надевшей бриллиантовый венец.
В организме обычного человека насчитывается от пятидесяти до семидесяти триллионов клеток. Именно так, 50 000 000 000 000 клеток. Эта оценка весьма приблизительна, но и удивляться этому не приходится. Представьте, что мы смогли каким-то образом разделить человека на отдельные клетки и решили пересчитать их, установив для себя скорость по одной клетке в секунду. Если мы не будем устраивать перерывы на чашечку кофе и, сбившись, не станем пересчитывать сначала, то при самом благоприятном развитии событий на эту работу у нас уйдет около полутора миллионов лет. Из наших клеток сформировано множество самых разных типов тканей, в высшей степени специфических и совершенно непохожих друг на друга. Если что-нибудь не пойдет уж совсем наперекосяк, то почки не станут расти у нас посреди лба, а глазные яблоки не ощетинятся зубами. Нам это представляется само собой разумеющимся, но почему так происходит? Такая избирательность кажется довольно странной, особенно если мы вспомним, что каждая клетка нашего организма возникла в результате деления единственной начальной клетки. Эта первичная клетка называется зиготой. Зигота образуется при слиянии одного сперматозоида с одной яйцеклеткой. Зигота делится надвое; затем уже две клетки снова делятся пополам, и так продолжается до тех пор, пока не завершится формирование удивительного конечного результата, именуемого человеческим телом. В процессе деления клетки все больше и больше отличаются друг от друга и образуют специфические типы клеток. Этот процесс известен как дифференциация. Именно он играет главенствующую роль в формировании любого многоклеточного организма.
Если мы посмотрим на бактерии под микроскопом, то убедимся, что все бактерии одного вида выглядят абсолютно одинаково. А теперь под тем же микроскопом рассмотрим некоторые клетки человека — скажем, всасывающие пищу клетки тонкой кишки и нейроны головного мозга, — и, скорее всего, будет весьма сложно поверить в то, что они имеют одно и то же земное происхождение. Так в чем же дело? Ведь и те, и другие клетки развились из одного и того же, общего для них, генетического материала. Именно общего, в том-то все и дело, так как они произошли от единственной первичной клетки, зиготы. А это значит, что клетки могут становиться совершенно разными, несмотря на то, что берут свое начало от одной клетки с записанным в ней единственным планом развития.
Одно из объяснений этого феномена заключается в том, что клетки разным образом используют одну и ту же информацию, и это, несомненно, так и есть. Однако такое объяснение не никак не помогает нам в наших поисках истины. В экранизации 1960 года «Машины времени» Г. Дж. Уэллса, где Род Тейлор исполнил роль путешествующего по времени ученого, есть одна сцена, в которой он демонстрирует изобретенный им аппарат своим высокообразованным коллегам (исключительно мужчинам, естественно), и один из них просит объяснить, как эта штука работает. И наш герой рассказывает, как путешественник, бороздя время, будет управлять машиной с помощью следующего нехитрого механизма:
«Перед ним располагается рукоятка, задающая направление движения. Отжимая рукоятку от себя, он посылает аппарат в будущее. Прижимая ее к себе, отправляется в прошлое. И чем сильнее давление на рукоятку, тем выше скорость развивает машина».
Все глубокомысленно кивают, выслушав это объяснение. Вот только проблема в том, что это никакое не объяснение, а всего лишь описание. То же самое мы вправе возразить и в ответ на утверждение о том, что клетки разными способами используют одну и ту же информацию, — это заявление не сообщает нам ничего нового, в нем только лишь перефразировано то, что нам и так было известно.
Куда интереснее было бы выяснить, каким образом клетки могут использовать одну и ту же генетическую информацию различными способами. Еще интереснее и важнее узнать, как клеткам удается помнить о том, что им предстоит делать, и продолжать делать это.
Клетки в нашем костном мозге производят клетки крови, клетки в печени продолжают производить клетки печени. Почему это происходит?
Одно из возможных и весьма привлекательных объяснений заключается в том, что по мере того как клетки становятся все более специфическими, они перестраивают свой генетический материал и, вероятно, утрачивают гены, в которых больше не нуждаются. Печень принадлежит к числу жизненно важных и чрезвычайно сложных органов. На вэб-сайте фонда British Liver Trust [3] говорится, что печень выполняет в организме свыше 500 функций, включая участие в переработке пищи, усвоенной кишечником, нейтрализации токсинов и выработке ферментов, выполняющих в нашем организме самый широкий спектр задач. Однако чем печень не занимается никогда и ни при каких условиях — это перенос по организму кислорода. Эта обязанность возложена на красные кровяные тельца, которые до отказа заполнены особым белком, гемоглобином. Гемоглобин захватывает кислород в тканях, где того в избытке, например в легких, а затем освобождается от него, когда красные кровяные тельца достигают тканей, нуждающихся в этом важнейшем химическом элементе, таких как, скажем, крошечные кровяные сосуды в кончиках наших пальцев ног. Печень никогда не возьмет на себя эту функцию, так как, возможно, она просто «избавилась» от гена гемоглобина, который никогда так и не использовала?
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Комментарии