Голая статистика. Самая интересная книга о самой скучной науке - Чарльз Уилан Страница 4

Книгу Голая статистика. Самая интересная книга о самой скучной науке - Чарльз Уилан читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Голая статистика. Самая интересная книга о самой скучной науке - Чарльз Уилан читать онлайн бесплатно

Голая статистика. Самая интересная книга о самой скучной науке - Чарльз Уилан - читать книгу онлайн бесплатно, автор Чарльз Уилан

Ознакомительный фрагмент

Если этот показатель поместить в определенный контекст, он может многое нам рассказать. Например, коэффициент Джини для Швеции составляет 0,23; для Канады – 0,32; для Китая – 0,42; для Южной Африки 0,65 [4]. Анализ этих значений позволяет получить представление о том, какое место в мире занимают Соединенные Штаты с точки зрения неравенства распределения доходов. Можно также проанализировать, как коэффициент Джини изменяется со временем в одной и той же стране. Например, в 1997 году для Соединенных Штатов он равнялся 0,41, а в следующем десятилетии достиг 0,45 (самые последние данные ЦРУ относятся к 2007 году). Это дает возможность составить объективную картину нарастания неравенства в распределении богатства по мере процветания Соединенных Штатов (во всяком случае на рассматриваемом отрезке времени). Кроме того, мы можем сравнить изменения коэффициента Джини в разных странах примерно за один и тот же период времени. Скажем, в Канаде за указанный период он практически остался прежним. Швеция на протяжении двух последних десятилетий переживала фазу значительного экономического роста, однако коэффициент Джини в ней фактически снизился с 0,25 в 1992 году до 0,23 в 2005-м; это означает, что за указанный период Швеция не только стала богаче, но и доходы в ней начали распределяться более равномерно.

Можно ли считать коэффициент Джини идеальным показателем неравенства? Отнюдь нет – точно так же как рейтинг распасовщика нельзя считать идеальным показателем эффективности действий куортербека. Но несомненно одно: он позволяет нам получить весьма ценную информацию о социально значимом явлении – неравенстве в распределении богатства – в достаточно удобном формате.

Итак, мы медленно продвигаемся к получению ответа на вопрос, поставленный в названии этой главы: в чем суть? А в том, что статистика помогает нам обрабатывать данные, хотя на самом деле это всего лишь еще одно название информации. Подчас эти данные тривиальны, как в случае спортивной статистики, а подчас проливают свет на природу человеческого общества, как в случае коэффициента Джини.

Но, как любят повторять в телевизионных рекламных роликах, это еще не все! Хол Вариан, главный экономист компании Google, в интервью The New York Times сказал, что в следующем десятилетии работа со статистическими данными станет «модной профессией», а точнее «сексуальной» (дословное выражение Хола Вариана: the sexy job) {2}. Я, наверное, окажусь первым, кто пришел к выводу о весьма превратном представлении некоторых экономистов о том, что следует считать «сексуальным». Тем не менее предлагаю рассмотреть несколько никак не связанных между собой вопросов.

• Как уличить учебные заведения в подтасовке результатов стандартизированных тестов?

• Откуда Netflix [5] известно о том, какого рода фильмы вам нравятся?

• Как определить, какие вещества и образ жизни вызывают раковые заболевания, учитывая, что мы не можем проводить над людьми экспериментов, приводящих к заболеванию раком?

• Можно ли рассчитывать на более успешный исход хирургической операции, если молиться за пациента?

• Существует ли реальная экономическая выгода в получении диплома какого-либо из престижных колледжей или университетов?

• Что является причиной роста заболеваемости аутизмом?


Статистика способна помочь нам (или, как мы рассчитываем, поможет в ближайшем будущем) получить ответы на эти вопросы.

Наш мир все быстрее и быстрее генерирует все большие и большие объемы данных. Тем не менее, как справедливо отметила The New York Times, «данные – всего лишь исходный материал знаний» {3}, [6]. Статистика – самый мощный из имеющихся в нашем распоряжении инструментов для практического использования информации, например для оценивания эффективности действий бейсболистов или более справедливой оплаты труда преподавателей. Ниже приведен краткий обзор того, как статистика способна придать смысл исходным данным.

Описание и сравнение

Счет партии в боулинг является описательной (дескриптивной) статистикой. То же можно сказать и о каком-либо среднем показателе (например, в спорте). Большинство американских спортивных болельщиков в возрасте старше пяти лет неплохо разбираются в описательной статистике. Мы используем численные показатели в спорте и других сферах жизни для подытоживания информации. Насколько Микки Мэнтл был хорош как бейсболист? Его итоговый рейтинг как хиттера составил 0,298. Для бейсбольных болельщиков это весьма красноречивое число. Итоговый рейтинг 0,298 – выдающийся показатель, если принять во внимание, что в нем учитываются результаты Микки Мэнтла за восемнадцать лет карьеры профессионального бейсболиста {4}. (Хотя, согласитесь, если итог жизни человека можно выразить одним-единственным числом, это несколько разочаровывает и настраивает на мысли о бренности человеческого бытия.) Разумеется, фанаты бейсбола должны помнить о существовании другой описательной статистики, которая, возможно, отражает ценность того или иного бейсболиста гораздо лучше, чем пресловутый средний показатель.

Академическая успеваемость учащихся школ и колледжей в США оценивается с помощью среднего балла. В стране используется шкала с буквенными обозначениями, где каждой букве соответствует определенный балл: как правило, A = 4 балла, B = 3 балла, C = 2 балла и т. д. По окончании учебного заведения, когда абитуриенты поступают в колледжи, а выпускники колледжей подыскивают себе работу, средний балл становится удобным инструментом для оценивания их академического потенциала. Тот, у кого средний балл 3,7, явно сильнее выпускника со средним баллом 2,5. Таким образом, средний балл является весьма полезной описательной статистикой. Его легко вычислить, понять и сравнивать с баллами других учащихся.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Комментарии

    Ничего не найдено.