Жизнь на грани. Ваша первая книга о квантовой биологии - Джонджо МакФадден Страница 3

Книгу Жизнь на грани. Ваша первая книга о квантовой биологии - Джонджо МакФадден читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Жизнь на грани. Ваша первая книга о квантовой биологии - Джонджо МакФадден читать онлайн бесплатно

Жизнь на грани. Ваша первая книга о квантовой биологии - Джонджо МакФадден - читать книгу онлайн бесплатно, автор Джонджо МакФадден

Ознакомительный фрагмент

Чтобы понять, как работает подобный компас, следует обратиться к силовым линиям магнитного поля — невидимым линиям, определяющим направление действия магнитного поля. Именно вдоль этих линий отклоняется стрелка компаса, когда прибор помещен в любое место магнитного поля. Многие из нас наблюдали эти линии в узоре, складывающемся из железных опилок на бумажном листе, под который подкладывали магнитный брусок. А теперь представьте, что наша Земля — это гигантский магнит, из Южного полюса которого выходят силовые линии и, огибая Землю огромными петлями, входят в ее Северный полюс (рис. 1.1).

Жизнь на грани. Ваша первая книга о квантовой биологии

Рис. 1.1. Магнитное поле Земли


В районе полюсов эти линии направлены почти строго вертикально вовнутрь или вовне, однако чем дальше от полюсов, тем больший изгиб они приобретают, проходя почти параллельно поверхности Земли в районе экватора. Компас, который измеряет угол магнитного наклонения между силовыми линиями поля и поверхностью Земли (мы будем называть его инклинометр), способен различать направление к полюсу и направление к экватору, однако он не отличает Северного полюса от Южного, поскольку на обоих полюсах угол между силовыми линиями поля и поверхностью Земли одинаков. В 1976 году супруги Вильчко установили, что механизм магниторецепции у малиновки работает так же, как инклинометр. Проблема заключалась в том, что никто не мог объяснить принцип действия подобного биологического инклинометра: в то время биологический механизм, позволяющий птице определять угол магнитного наклонения, был не только неизвестен, но и немыслим. Оказалось, что разгадка этой тайны кроется в одной из самых потрясающих научных теорий нашего времени и связана с одной из самых удивительных наук — квантовой механикой.

Тайный мир призраков

Если устроить опрос среди ученых и поинтересоваться у них, какая научная теория, по их мнению, является самой успешной, всеохватывающей и важной, ответ будет с большой вероятностью зависеть от того, задаете вы вопрос ученому-физику или биологу. Большинство биологов считают самой глубокой теорией, когда-либо выдвинутой ученым, дарвиновскую теорию эволюции путем естественного отбора. Физики же наверняка отдадут пальму первенства квантовой механике, во многом лежащей в основании физики и химии и открывающей перед нами удивительно полную картину строения Вселенной. Действительно, без объяснительной силы квантовой механики рушатся все наши современные представления о мире.

Каждый из нас хоть что-нибудь да слышал о квантовой механике. Более того, представления о том, что в этих сложнейших научных дебрях ориентируются только ничтожное количество очень умных людей, давно стали частью массовой культуры. На самом деле квантовая механика является неотъемлемой частью жизни каждого человека с самого начала XX века. В основе этой научной дисциплины лежит математическая теория, разработанная в середине 1920-х годов для объяснения процессов в мире ничтожно малых величин (так называемом микромире) — например, поведения атомов, из которых состоит все вокруг, а также свойств частиц гораздо меньших размеров. Так, описывая правила поведения электронов внутри атомов, квантовая механика становится фундаментом химии, материаловедения и даже электроники. Математические правила моделирования, разработанные в рамках квантовой механики (несмотря на ее странность и сухость), лежат в основе большинства научно-технических достижений последних 50 лет. Квантовая механика объясняет, как электроны движутся в различных материалах. Это дало человеку ключ к разгадке поведения полупроводников, на которых зиждется современная электроника. Без понимания поведения полупроводников мы не смогли бы создать кремниевый транзистор, а позднее — микрочип и современный компьютер. Список можно продолжить: без тех знаний, которые открыла нам квантовая механика, мы бы не имели лазера и, соответственно, CD и DVD и стандарта Blu-ray; без квантовой механики у нас не было бы смартфонов, спутниковой навигации и МРТ-сканеров. Более того, по оценкам специалистов, свыше одной третьей ВВП развитых стран мира связано с технологиями, которые были бы невозможны без понимания механики микромира.

И это только начало. Мы смело можем надеяться на квантовое будущее (и с большой вероятностью мы с вами его застанем), когда нам благодаря управляемой термоядерной реакции, индуцированной лазерами, будут доступны неограниченные объемы электроэнергии; когда искусственные молекулярные механизмы будут выполнять множество задач в сфере машиностроения, биохимии и медицины; когда квантовый компьютер станет носителем искусственного интеллекта; и наконец, когда телепортация, придуманная писателями-фантастами, станет привычным способом передачи информации. Квантовая революция, начавшаяся в XX веке, в XXI невероятно ускоряет темпы. Дух захватывает от того, насколько она изменит нашу с вами жизнь.

Так что же такое квантовая механика? Ответ на этот вопрос мы с вами будем искать на протяжении всей книги. Начнем, пожалуй, с некоторых примеров, интересных прежде всего новичкам, — примеров существования скрытой квантовой реальности, лежащей в основе нашей жизни.

Первый пример иллюстрирует одну из странных особенностей квантового мира и, возможно, его главную отличительную черту — корпускулярно-волновой дуализм. Всем нам известен тот факт, что мы сами и все, что нас окружает, состоим из множества крошечных дискретных частиц — атомов, электронов, протонов и нейтронов. Вы, возможно, знаете также, что энергия (например, свет или звук) проявляет скорее свойства волн, нежели частиц. Волны распространяются в направлении движения, а не рассеиваются. Они движутся в пространстве, как, скажем… морские волны (другое слово трудно подобрать) с их вершинами и подошвами. Квантовая механика берет свое начало с того момента, когда в самом начале XX века ученые открыли, что частицы способны проявлять свойства волн, а световые волны могут вести себя как частицы.

Разумеется, корпускулярно-волновой дуализм — не та вещь, о которой обычный человек станет задумываться каждый день. Тем не менее он является необходимой базой для создания многих приборов, в частности электронных микроскопов, благодаря которым врачи и ученые имеют возможность видеть, идентифицировать и исследовать объекты настолько малых размеров, что их нельзя наблюдать с помощью традиционных оптических микроскопов. К таким объектам относятся, например, вирусы, приводящие к развитию СПИДа или обычной простуды. Электронный микроскоп был создан благодаря открытию свойств волны у электронов. Немецкие ученые Макс Кнолль и Эрнст Руска пришли к мысли о том, что, поскольку длина волны (расстояние между ближайшими вершинами или подошвами) электрона намного короче, чем длина видимой световой волны, микроскоп, основанный на электронном изображении, должен обладать гораздо большей разрешающей способностью по сравнению с оптическим микроскопом. Это возможно благодаря тому, что любые крошечные объекты, размеры которых не превышают размеров волны, попадающей на них, никак не влияют на нее. Представьте океанские волны, длина которых достигает нескольких метров, обрушивающиеся на прибрежную гальку. Изучая эти волны, вы мало что узнаете о форме и размере отдельных камушков, омываемых ими. Для этого вам понадобятся волны гораздо меньших размеров, как, например, те, что образуются в волновом лотке, или те, которые демонстрируют школьникам учителя физики, чтобы дети «разглядели» камушек в тот момент, когда волна отскакивает от него или огибает. Итак, в 1931 году Кнолль и Руска создали первый в мире электронный микроскоп и с помощью нового прибора получили первые в мире изображения вирусов. За изобретение электронного микроскопа Эрнст Руска был удостоен Нобелевской премии по физике. Однако произошло это с большим запозданием — лишь в 1986 году (за два года до смерти ученого).

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Комментарии

    Ничего не найдено.