Логика случая. О природе и происхождении биологической эволюции - Евгений Кунин Страница 19

Книгу Логика случая. О природе и происхождении биологической эволюции - Евгений Кунин читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Логика случая. О природе и происхождении биологической эволюции - Евгений Кунин читать онлайн бесплатно

Логика случая. О природе и происхождении биологической эволюции - Евгений Кунин - читать книгу онлайн бесплатно, автор Евгений Кунин

Ознакомительный фрагмент

Если мы действительно стремимся «понять» эволюцию, принципиально важно исследовать геномные образцы как вглубь (для этого необходимы геномные последовательности множества близкородственных представителей одного и того же таксона), так и вширь (для этой цели нужны последовательности как можно большего числа различных таксонов — в идеале всех таксонов). Ко времени написания этих строк, в последние дни 2010 года, собрание секвенированных геномов состояло из нескольких тысяч геномов вирусов, более чем тысячи геномов бактерий и архей, а также приблизительно сотни геномов эукариот. Ко времени издания этой книги геномная база данных почти удвоится, а благодаря новому поколению методов секвенирования в предстоящие годы ее темпы роста должны еще более ускориться [30]. Несмотря на то что не все основные таксоны должным образом охвачены, быстро пополняющееся собрание геномов все более отвечает потребностям исследований как в области микроэволюции, так и в области макроэволюции.

Успехи традиционной геномики дополняют и стремительно накапливающиеся в последнее время, обширные по объему данные по метагеномике — а именно всеобъемлющее (или, по меньшей мере, обширное) секвенирование нуклеиновых кислот форм жизни из разнообразных сред обитания. Хотя применяемые в настоящее время в метагеномике подходы обычно не обеспечивают полную расшифровку геномов, они предоставляют бесценную, объективную информацию о разнообразии жизни в различных средах.

В данной главе представлен обзор разнообразия и основных характеристик геномов. В последующих главах подробно исследуется влияние результатов сравнительных геномных исследований на развитие «постсовременной» синтетической теории эволюционной биологии.

Эволюция геномных ландшафтов

Поразительное разнообразие геномов

Геном стал первым термином с окончанием «-ом» — и до сих пор является наиболее употребительным термином этой группы [31]. Как это всегда бывает в биологии, определить, что же такое геном, нелегко. Говоря просто, геном — это генетическая информация конкретного организма во всей ее полноте. Существование стабильного ядра унаследованной генетической информации (а более конкретно, генов) вытекает из самого факта существования надежной наследственности, а в терминах более фундаментальных — из принципа подверженной ошибкам репликации (ПОР, см. гл. 2). Однако связь между «генетической информацией во всей ее полноте» и «стабильным ядром» не так уж проста. Стоит, к примеру, задать на первый взгляд невинный вопрос: «Что есть геном кишечной палочки Escherichia coli?» — как тут же возникает целый ряд серьезных затруднений. А вопрос «Что такое геном человека?» вызывает свои, не менее сложные проблемы. Вернемся мы к этому обсуждению позднее (см. гл. 5), а сейчас рассмотрим многообразие геномов, расшифрованных за последние 15 лет.

Новая эра геномики наступила на исходе лета 1995 года. Тогда лаборатория Дж. Крейга Вентера опубликовала результаты секвенирования генома условно-патогенной бактерии гемофильного гриппа Haemophilus influenzae (Fleischmann et al., 1995). В процессе расшифровки геномной последовательности H. influenzae Вентер, Гамильтон Смит и их коллеги усовершенствовали так называемый «метод дробовика». Этот подход грубого деления генома на короткие произвольные участки с расшифровкой их по частям и последующим восстановлением полной геномной последовательности быстро превратил секвенирование длинных нуклеотидных цепочек в рутинное дело. В течение года были расшифрованы геномы некоторых других бактерий, первый геном археи (Methanocaldococcus jannaschii) и первый геном эукариота (пекарские дрожжи Saccharomyces cerevisiae) (Koonin et al., 1996). К 1999 году установился стабильный экспоненциальный рост коллекции секвенированных геномов (см. рис. 3-1).

В диапазоне от вирусов до животных геномы различаются по размеру на шесть порядков — от нескольких тысяч до нескольких миллиардов нуклеотидов; для клеточных организмов, исключая вирусы, ширина диапазона составляет четыре порядка (см. рис. 3-2). По количеству генов диапазон значительно уже и составляет всего около четырех порядков, от двух-трех генов у простейших вирусов до приблизительно 40 тысяч генов у некоторых животных. Если же исключить вирусы и паразитические (симбиотические) бактерии, диапазон по числу генов становится довольно узким, немногим более одного порядка (см. рис. 3-2; Koonin, 2009a; Lynch, 2007c). Кажется весьма удивительным, что млекопитающие или цветковые растения имеют всего примерно в десять раз больше (легко идентифицируемых) генов, чем какая-нибудь средняя свободно живущая бактерия, и лишь примерно в два раза больше, чем бактерия из разряда наиболее сложных (см. рис. 3-2). Далее в книге рассматриваются всевозможные объяснения этих явных ограничений по числу генов в геномах всех форм жизни (см. гл. 5, 7 и 10).

Логика случая. О природе и происхождении биологической эволюции

Рис. 3-1. Экспоненциальный рост коллекции секвенированных геномов. Данные с веб-сайта Национального центра биотехнологической информации ( www.ncbi.nlm.nih.gov/genome/)

Логика случая. О природе и происхождении биологической эволюции

Рис. 3-2. Общий размер геномов и число генов у вирусов, бактерий, архей и эукариот. Данные с веб-сайта Национального центра биотехнологической информации. Представлено в двойном логарифмическом масштабе. Стрелка указывает на точку изменения наклона кривой, соответствующую переходу от «малых» к «большим» геномам.

Грубо говоря, геномы могут быть разделены на два четко выделенных класса (Koonin, 2009a). Граница, разделяющая эти классы, находится в точке изменения наклона кривой на графике, представленном на рис. 3-2.

1. Геномы со строгим соответствием между размером генома и числом генов. К ним относятся геномы всех вирусов и прокариот, имеющие огромную плотность генов от 0,5 до 2 генов на тысячу пар оснований и очень короткие участки между генами (10–15 процентов длины генома и даже меньше), состоящие главным образом из регуляторных элементов. Иногда, говоря о таких геномах, вспоминают ковер «от стены к стене» (wall to wall genomes) [32], так как они почти полностью состоят из легко определяемых генов. Геномы большинства одноклеточных эукариот демонстрируют несколько меньшую зависимость между размером генома и числом генов, чем геномы вирусов и прокариот, тем не менее они могут быть отнесены к этому же классу.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Комментарии

    Ничего не найдено.