Великая теорема Ферма - Саймон Сингх Страница 18

Книгу Великая теорема Ферма - Саймон Сингх читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Великая теорема Ферма - Саймон Сингх читать онлайн бесплатно

Великая теорема Ферма - Саймон Сингх - читать книгу онлайн бесплатно, автор Саймон Сингх

На протяжении четырех следующих веков Библиотека продолжала пополнять свою коллекцию — до 389 года н. э., когда ей был нанесен первый из двух роковых ударов. Причиной обоих ударов стал религиозный фанатизм. Византийский император Феодосий приказал епископу Александрийскому Теофилу разрушить все языческие монументы. К сожалению, восстанавливая и восполняя Библиотеку, Клеопатра решила отвести под нее храм Сераписа. По приказу императора, это здание было разрушено, а «языческие» ученые, пытавшиеся спасти рукописи, накопленные за шесть веков, растерзаны толпой фанатиков. Началась мрачная эра Средних веков.

Несколько драгоценных экземпляров наиболее важных книг пережили бойню, учиненную христианами, и ученые продолжали наведываться в Александрию в поисках знания. Но в 642 году последовало нападение мусульман. На этот раз поражение потерпели христиане. На вопрос, что делать с Библиотекой, одержавший победу халиф Омар заявил, что книги, противоречащие Корану, должны быть уничтожены как вредоносные, а книги, согласующиеся с Кораном, также должны быть уничтожены как излишние. Рукописи были брошены в печи, которыми отапливались публичные бани, и греческая математика обратилась в дым. Не удивительно, что большая часть «Арифметики» Диофанта оказалась уничтоженной. Следует считать чудом, что шесть книг «Арифметики» смогли уцелеть, пережив трагедию Александрии.

Следующую тысячу лет математика на Западе пребывала в упадке, и только несколько выдающихся ученых Индии и Аравии не дали ей окончательно угаснуть. Они скопировали формулы из сохранившихся греческих математических рукописей и принялись заново придумывать для этих формул утраченные теоремы. Кроме того, они пополнили математику новыми элементами и среди прочего изобрели число нуль.

В современной математике нуль выполняет две функции. Во-первых, нуль позволяет нам различать такие числа, как 52 и 502. В системе счисления, в которой положение цифры определяет ее значение, символ 0 необходим для обозначения пустой позиции. Например, 52 означает 5 раз по десять плюс 2 раза по единице, в то время как 502 означает 5 раз по сто, 0 раз по десять и 2 раза по единице. Нуль играет решающую роль при устранении неоднозначности. Даже вавилоняне, жившие за три тысячи лет до н. э., оценили использование нуля во избежание путаницы, и греки восприняли идеи вавилонян, используя кружок, похожий на тот символ нуля, который мы используем сегодня. Однако нуль выполняет еще одну, более деликатную и значительную, функцию, которую полностью оценили лишь через несколько столетий индийские математики. Они осознали, что нуль не только позволяет заполнить пробел между значащими цифрами, но и существует сам по себе, независимо от других чисел. Так абстрактное понятие «ничего» впервые обрело свой осязаемый символ.

Современному читателю изобретение нуля может показаться тривиальным шагом, но не следует забывать о том, что именно вторая, более глубокая функция нуля ускользнула от внимания всех древнегреческих философов, в том числе Аристотеля. По мнению Аристотеля нуль должен был быть объявлен вне закона, поскольку он нарушал единообразие других чисел: деление обыкновенного числа на нуль приводило к непостижимому результату. К VI веку индийские математики уже не заметали проблему нуля под ковер, а индийский ученый VII века Брахмагупта оказался уже настолько искушенным, что использовал деление на нуль для определения бесконечности.

В то время как Европа оставила благородный поиск истины, Индия и Аравия укрепляли знание, тайно похищенное на пепелище Александрии, и излагали его на новом, более выразительном языке. Индийские и арабские математики не только пополнили математический словарь нулем, но и заменили примитивные греческие символы и неуклюжие римские числительные общепринятой и ныне системой счисления. Последнее достижение, как и введение нуля, может показаться ничтожно малым продвижением, но попробуйте умножить CLV на DCI, и вы оцените значение этого прорыва: эквивалентная задача умножения 155 на 601 гораздо проще. Развитие любой научной дисциплины зависит от ее способности развивать свои идеи и обмениваться ими, а это в свою очередь определяется научным языком, который должен быть достаточно подробным и гибким. Идеи Пифагора и Евклида отличались большим изяществом, несмотря на грубое и неуклюжее оформление, но после перевода в арабскую символику они расцвели и принесли много плодов, породив новые и богатые понятия.

В X веке французский ученый Герберт Аврилакский перенял новую систему счисления у испанских мавров и, занимаясь преподаванием в церквах и школах по всей Европе, внедрил новую систему на Западе. В 999 году он был избран папой Сильвестром II, и это позволило ему способствовать еще большему распространению новых индо-арабских цифр. И хотя необычная эффективность новой системы счисления произвела подлинный переворот в выполнении всех счетных операций и была быстро воспринята купцами, она слабо способствовала оживлению европейской математики.

Жизненно важным, поворотным пунктом в развитии западной математики стал 1453 год, когда турки разграбили Константинополь. За прежние годы рукописи, спасенные после уничтожения Александрии, нашли убежище в Константинополе, и теперь снова оказались под угрозой уничтожения. Византийские ученые бежали на запад, прихватив с собой те тексты, которые могли унести. Пережив нападения Цезаря, епископа Теофила, халифа Омара, а теперь еще и турок, несколько драгоценных книг «Арифметики» Диофанта проделали обратный путь в Европу. Судьба распорядилась так, чтобы сочинение Диофанта оказалось на письменном столе Пьера де Ферма.

Рождение проблемы

Судебные обязанности Ферма поглощали значительную часть его времени, а те скудные часы досуга, которые все же оставались, Ферма целиком посвящал математике. Отчасти это объяснялось тем, что во Франции XVII века не поощрялись светские связи судей.

Считалось, что друзья и светские знакомые судей сами могут оказаться под судом, и тогда личные связи могут помешать осуществлению правосудия. Изолированный от остальной части высшего общества Тулузы, Ферма мог сосредоточиться на своем любимом занятии.


Великая теорема Ферма

Фронтиспис перевода «Арифметики» Диофанта выполненного Клодом Гаспаром Баше и опубликованного в 1621 году. Эта книга во многом вдохновила Ферма на его исследования


Не сохранилось никаких документальных свидетельств того, что у Ферма был учитель математики, который поощрял своего способного ученика. Наставником и учителем Ферма стала «Арифметика» Диофанта. В «Арифметике» теория чисел, как было принято во времена Диофанта, излагалась в виде ряда задач и их решений. В действительности Диофант развернул перед Ферма картину целого тысячелетия, заслуживающего осмысления со стороны математика. В одной «Арифметике» Ферма мог найти все, что было известно о числах благодаря трудам последователей Пифагора и Евклида. Теория чисел замерла после варварского сожжения Александрии, но Ферма преисполнился решимости возродить изучение самой фундаментальной из всех математических дисциплин.

Книга, вдохновившая Ферма, была латинским переводом «Арифметики», выполненным Клодом Гаспаром Баше де Мезириаком, считавшимся самым ученым человеком во всей Франции. Блестящий лингвист, поэт и знаток классических языков и литературы, Баше питал любовь к математическим задачам-головоломкам. Его первой публикацией был сборник занимательных задач под названием «Problemes plaisans et delectables qui se font par les nombres» [2]. В сборнике были задачи о переправах через реку, переливании жидкостей и несколько фокусов с отгадыванием задуманного числа. Одна из задач ставила вопрос о подборе гирь: «Каков наименьший набор гирь, который позволит взвесить любой груз весом от 1 до 40 кг?»

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Комментарии

    Ничего не найдено.