Хаос. Создание новой науки - Джеймс Глик Страница 15
Хаос. Создание новой науки - Джеймс Глик читать онлайн бесплатно
Ознакомительный фрагмент
Вначале Смейл выдвинул ошибочную догадку. На строгом математическом языке он предположил, что практически все динамические системы в большинстве случаев начинают вести себя вполне понятно и предсказуемо. Но, как он вскоре понял, дела обстояли не так просто.
Смейл был одним из тех математиков, которые не только решают проблемы, но и подкидывают их другим. Знание истории и интуитивное понимание природы подсказывали ему, что появилось множество новых областей знания, достойных внимания математика. Подобно удачливому бизнесмену Смейл оценивал возможные риски и хладнокровно вырабатывал свою стратегию. Словно гамельнский крысолов, он обладал способностью очаровывать и увлекать за собой людей: куда шел Смейл, туда устремлялись многие. Тем не менее его слава не ограничивалась занятиями математикой. В самом начале войны во Вьетнаме он вместе с Джерри Рубином организовал акцию «Международные дни протеста», которая преследовала цель добиться запрета на передвижение армейских составов через Калифорнию. В 1966 году, когда Комиссия по расследованию антиамериканской деятельности пыталась вызвать его на судебные слушания, Смейл уехал на Международный конгресс математиков в Москву. Там он был удостоен Филдсовской премии, самой престижной награды в области математики.
История, случившаяся летом 1966 года в Москве, стала одной из легенд, которые окружали этого удивительного человека [83]. На конгрессе, где собралось пять тысяч математиков, кипели эмоции, разгорались политические страсти, составлялись разнообразные обращения и петиции. Ближе к концу, по просьбе журналиста из Северного Вьетнама, Смейл провел пресс-конференцию прямо на широких ступенях Московского государственного университета. Он начал с осуждения американской интервенции во Вьетнаме, но, заметив радостные улыбки чиновников принимавшей стороны, обрушился и на вторжение советских войск в Венгрию и ущемление гражданских свобод в Советском Союзе. Вскоре после этого Смейл вынужден был объясняться с советскими должностными лицами, а по возвращении в Калифорнию узнал, что Национальный научный фонд лишил его гранта [84].
Смейл был удостоен медали Филдса за выдающиеся исследования в области топологии – раздела математики, который начал бурно развиваться в XX веке, достигнув расцвета в 1950-е годы. Предметом топологии являются те свойства и качества, которые остаются неизменными при деформации геометрических фигур путем скручивания, сжатия или растяжения. Очертания и величина фигур – квадратные или круглые, большие или маленькие – для топологии не столь важны, так как могут быть изменены деформацией. Для тополога представляет интерес другое: есть ли на поверхности фигуры разрывы или отверстия, не имеет ли она форму узла. Топологи работают с поверхностями не только в одно-, двух– или трехмерном евклидовом мире, а в пространствах более высоких размерностей, которые и представить-то себе невозможно. Объекты топологии подобны геометрическим фигурам на растягивающейся листовой резине, и рассматривает она не столько количественные, сколько качественные характеристики, то есть задает вопрос: что мы может сказать о структуре в целом, если не знаем ее конкретных параметров? Смейл разрешил одну из основных задач топологии, имеющих длинную историю, – доказал так называемую обобщенную гипотезу Пуанкаре для пятимерного пространства и пространств большей размерности [85]. Благодаря этому он встал в один ряд с выдающимися коллегами по цеху. Тем не менее в 1960-х годах, оставив топологию, Смейл вступил на неизведанную землю: он занялся динамическими системами.
Возникновение обеих дисциплин – топологии и теории динамических систем – восходит еще к Анри Пуанкаре, который считал их двумя сторонами одной медали. На рубеже веков он последним из великих математиков применил геометрию для описания законов движения в физической вселенной. Пуанкаре раньше всех осознал проблему хаоса. Его работы содержат смутные указания на возможную непредсказуемость, столь же серьезную, какой она предстает и в исследованиях Лоренца. Однако после смерти французского математика топологию ожидал расцвет, а динамические системы – забвение. Даже само понятие вышло из употребления. Предмет, на который обратил свое внимание Смейл, назывался теорией дифференциальных уравнений. Последние использовались для описания непрерывных изменений системы во времени, причем в соответствии с господствующей традицией объекты рассматривались «локально». Подразумевалось, что инженер или физик примет во внимание лишь один набор параметров, описывающих состояние системы в данный момент времени. Смейл, как и Пуанкаре, стремился исследовать явления в глобальном масштабе, желая постигнуть все разнообразие возможностей сразу.
Любая совокупность уравнений, описывающих динамическую систему (в частности, уравнения Лоренца), позволяет установить определенные начальные параметры. В случае с тепловой конвекцией, например, один из заданных параметров характеризует вязкость жидкости. Значительные изменения исходных данных могут повлечь за собой ощутимые перемены в системе: например, вместо того чтобы стремиться к состоянию равновесия, система может начать совершать периодические колебания. Однако физики предполагали, что слабые изменения способны вызвать незначительное расхождение лишь в числовых данных, но никак не в качественном поведении системы.
Связав топологию и динамические системы, ученые получили бы возможность использовать геометрические образы для наглядного представления всего разнообразия способов поведения систем. С простой системой можно связать какую-то изогнутую поверхность, а со сложной – многообразие со множеством измерений [86]. Точка на поверхности описывает состояние системы в определенный момент времени. С течением времени состояние системы меняется – и точка передвигается по поверхности, описывая на ней некоторую траекторию. Изменяя параметры системы – например, слегка повышая вязкость жидкости или немного увеличивая силу, прикладываемую к маятнику, – мы немного изгибаем эту поверхность или траектории на ней. Приблизительно одинаковые очертания траекторий свидетельствуют о приблизительно одинаковом поведении. Если мы можем наглядно их себе представить, то можем понять, как устроена система.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Комментарии