Евклидово окно. История геометрии от параллельных прямых до гиперпространства - Леонард Млодинов Страница 12

Книгу Евклидово окно. История геометрии от параллельных прямых до гиперпространства - Леонард Млодинов читаем онлайн бесплатно полную версию! Чтобы начать читать не надо регистрации. Напомним, что читать онлайн вы можете не только на компьютере, но и на андроид (Android), iPhone и iPad. Приятного чтения!

Евклидово окно. История геометрии от параллельных прямых до гиперпространства - Леонард Млодинов читать онлайн бесплатно

Евклидово окно. История геометрии от параллельных прямых до гиперпространства - Леонард Млодинов - читать книгу онлайн бесплатно, автор Леонард Млодинов

Ознакомительный фрагмент

Эратосфен оказался не единственным александрийцем своего времени, кто внес значительный вклад в понимание мира. Астроном Аристарх Самосский, также трудившийся в Александрии, применил гениальный, хоть и довольно затейливый метод, объединивший тригонометрию и простенькую модель небес, для расчета вполне осмысленной приблизительной величины Луны и расстояния до нее. Еще раз подчеркнем: у греков возникло новое представление об их месте во Вселенной.

Еще одна знаменитость, привлеченная Александрией, — Архимед. Родившись в Сиракузах, городе на острове Сицилия, Архимед приехал в Александрию учиться в великой школе математиков. Мы, быть может, и не знаем, кем был тот гений, что впервые обточил камень или дерево до округлой формы и поразил изумленных зевак явлением первого колеса, но мы точно знаем [64], кто открыл принцип рычага: Архимед. Он, кроме того, открыл принципы гидростатики и много разного привнес в физику и инженерное дело. Математику он поднял на такую высоту, выше которой без инструментария символьной алгебры и аналитической геометрии забраться было невозможно еще около восемнадцати веков.

Одно из достижений Архимеда в математике — доведение до совершенства методов матанализа, не слишком далеких от предложенных Ньютоном и Лейбницем. С учетом отсутствия картезианской геометрии это достижение смотрится еще более впечатляющим. Главной победой, одержанной с помощью его метода, сам Архимед считал определение объема сферы, вписанной в цилиндр (т. е. сферы, радиус которой равен радиусу и высоте цилиндра), — он равен двум третям объема этого цилиндра. Архимед так гордился этим открытием [65], что потребовал высечь изображение шара в цилиндре на своем надгробии.

Когда римляне захватили Сиракузы, Архимеду было семьдесят пять. Он был убит римским солдатом, когда изучал рисунок, вычерченный на песке. На его надгробие нанесли изображение, о котором он просил. Спустя более сотни лет римский оратор Цицерон посетил Сиракузы и нашел захоронение Архимеда рядом с воротами в город. Заброшенная могила заросла колючкой и вереском. Цицерон распорядился восстановить могилу. Увы, ныне ее уже не найти.

И астрономия в Александрии тоже достигла пика развития [66]: во II веке до н. э. — стараниями Гиппарха, а во II веке н. э. — Клавдия Птолемея (не родственника царя). Гиппарх наблюдал небеса тридцать пять лет, сложил свои наблюдения с данными вавилонян и разработал модель Солнечной системы, согласно которой пять известных тогда планет, Солнце и Луна двигались по общей круговой орбите вокруг Земли. Ему так ловко удалось описать движение Солнца и Луны, как это видно с Земли, что он мог предсказывать лунные затмения с точностью до пары часов. Птолемей усовершенствовал и расширил эти результаты в книге «Альмагест», осуществив мечту Платона дать рациональное объяснение движению небесных тел, и она была главным астрономическим трудом вплоть до Коперника.

Птолемей также написал книгу под названием «География» [67], которая описывала земное мироздание. Картография — предмет крайне математичный, поскольку карты — плоские, Земля — почти сферическая, а сферу нельзя описать при помощи плоскости, сохранив при этом точными и расстояния, и углы. «География» — начало серьезной картографии.

Ко II веку н. э. значительно развились и математика, и физика, и картография, и инженерное дело. К тому времени мы уже знали, что материя состоит из неделимых кусочков под названием атомы. Мы изобрели логику и доказательство, геометрию и тригонометрию, а также некоторую разновидность матанализа. В астрономии и науке о пространстве мы владели знанием, что мир очень стар и что мы обитаем на шаре. Мы даже располагали размерами этого шара. Мы начали понимать свое место во Вселенной. Мы изготовились двигаться дальше. Сейчас-то мы знаем, что есть и другие солнечные системы — всего-то в десятках световых лет от нас. Продлись Золотой век без заминок, мы, быть может, уже послали бы к ним исследовательские корабли. Может, мы бы оказались на Луне в 969-м, а не в 1969-м году. Может, мы бы поняли о пространстве и жизни то, что у нас сейчас и в голове не укладывается. Однако обстоятельства сложились так, что прогресс, начатый греками, задержался на тысячелетие.

Не исключено, что о причинах средневекового интеллектуального заката написано больше слов, чем было в свитках Александрийской библиотеки. Простого ответа нет. Династия Птолемеев пришла в упадок за два века до рождения Христа. Птолемей XII передал царствование сыну и дочери, унаследовавшим власть после смерти правителя в 51 году до н. э. В 49 году до н. э. его сын устроил заговор против сестрицы и прибрал всю власть к рукам. Сестрица же и сама была не промах — нашла способ добраться до самого римского императора и попросить о помощи (в те времена, хоть формально и не завися от Рима, империя Птолемеев уже находилась под римским господством). С этого начался роман Клеопатры с Юлием Цезарем. В итоге Клеопатра заявила, что собирается родить Цезарю сына. Римский император — мощный союзник египтянам, однако этот альянс был обречен — вместе с самим Цезарем. После того, как двадцать три римских сенатора напали на своего императора и закололи его во время Мартовских ид 44 года до н. э., внучатый племянник Цезаря, Октавиан, подчинил Риму и Александрию, и Египет.

Поскольку Рим завоевал Грецию, римляне получили доступ к интеллектуальному достоянию греков. Наследники греческих традиций покорили бо́льшую часть мира и столкнулись со многими техническими и инженерными трудностями, однако их императоры не поддерживали математику так, как это делали Александр или Птолемей Египетский, и цивилизация их не произвела на свет ни одного математического гения масштабов Пифагора, Евклида или Архимеда. За 1100 лет их правления — с 750 года до н. э. — история не помнит ни одной доказанной римлянами теоремы и ни одного математика. Для греков определение расстояний было математической задачей с участием равных и подобных треугольников, параллакса и геометрии. В римских учебниках [68] в словесно сформулированной задаче от читателя требовалось найти метод определения ширины реки, когда другой берег занят врагом. «Враг» — понятие, чья полезность в математике довольно спорна, зато оно — ключевое для римской манеры мышления.

В абстрактной математике римляне не разбирались — и гордились этим. Цицерон сказал: «Греки держали геометров в высочайшем почете. Потому и более всего развили они математику. Но мы положили предел этому искусству его пользой в измерении и счете». Вероятно, о римлянах можно было бы сказать: «Римляне держали воинов в высочайшем почете. Потому более всего развили они насилие и мародерство. Но мы положили предел этому искусству его пользой в покорении мира».

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы

Комментарии

    Ничего не найдено.