Критическая масса. Как одни явления порождают другие - Филип Болл Страница 50
Критическая масса. Как одни явления порождают другие - Филип Болл читать онлайн бесплатно
В модели Хелбинга и Молнара предполагается, что пешеходы движутся в заданном направлении с некоторой определенной скоростью. Их поведение при этом определяется рядом внешних факторов, главным из которых выступает стремление избежать столкновений, что трактуется практически как желание сохранить «личное пространство», т. е. некоторое расстояние между собой и другими пешеходами. Это представляется разумной моделью, так как люди в толпе ведут себя именно так, как если бы между ними действовали силы отталкивания, возрастающие при сближении. Современные теории жидкости часто также используют аналогичное «мягкое» отталкивание между частицами, резко возрастающее на очень малых расстояниях. И теория жидкостей ван дер Ваальса включала представление о жестком отталкивании при соприкосновении двух частиц.
Теория ван дер Ваальса учитывает также и наличие сил притяжения между частицами. В модели Хелбинга и Молнара такие силы вводятся только при изучении некоторых особых ситуаций, например, для оценки возможности формирования групп, но обычно считается, что все виртуальные пешеходы одинаково стараются избежать слишком близкого соседства. В этом отношении они резко отличаются от бойдов и самодвижущихся бактерий Вицека, так как в модель не заложено стремление к согласованию направленности движения, что исключает возможность формирования стай какого-либо вида [57]. Вместо этого придуманные создания (которых, следуя «Бриллиантовым псам» Дэвида Боуи, можно назвать пиплоида- ми — peoploids), образно говоря, пашут только по своей борозде, тщательно избегая нарушений границы с соседними созданиями.
На первый взгляд кажется, что описываемые моделью пиплоиды являются какими-то немыслимыми эгоцентриками, лишенными любых признаков социального поведения, однако компьютерное моделирование вдруг выявило у них некоторые типы групповой динамики и даже признаки «воспитанности». Например, идущие по коридору в разных направлениях пиплоиды неожиданно стали согласовывать свои движения, образуя как бы два встречных потока движения, что сразу позволило избежать множества сложных маневров при встречных столкновениях, что, кстати, весьма похоже на реальную картину движения пешеходов (рис. 6.4). Введение в модель препятствий но оси движения в виде виртуальных колонн или деревьев лишь усилило тенденцию к упорядочению этих потоков, даже без указания предпочтительного направления обхода. «Полосы движения» при этом возникают спонтанно, но выбор направления движения по ним остается случайным [58].
Когда две группы пиплоидов пытаются одновременно пройти в противоположных направлениях через один проход, естественно, возникает «прорыв» то в одном, то в другом направлении (рис. 6.5). Одна из групп «захватывает» дверь на некоторое время (какие-то нахалы в ярких куртках прорываются первыми, а за ними следуют остальные), а вторая ждет, пока этот поток не ослабеет. Разумеется, вежливость тут ни при чем, поскольку пиплоиды второй группы просто стараются избежать слишком тесного сближения с членами первой.
Хелбинг и Кэй Болей смогли затем смоделировать процесс такого обучения и показать, что если виртуальные пешеходы выработали у себя предпочтительное направление обхода, позволяющее лучше избегать столкновений, то они продолжают сохранять этот случайно возникший признак.
Результаты расчета могут быть использованы для более рациональноп регулирования людских потоков в различных условиях. Например, даже простая установка разделительных колонн приводит к некоторой само организации описываемых потоков. Чаще всего сложность организациі движения оказывается связанной с известной проблемой наиболее узкоп прохода в системе, называемого обычно горлышком бутылки. На первыі взгляд кажется, что простейшим решением является расширение прохода но опыт показывает, что при этом возрастает частота смены «прорывов» поэтому предпочтительнее использовать два узких прохода. Даже в те: случаях, когда предпочтительное направление движения не указано, толп; автоматически организуется в два противоположно направленных поток; (рис. 6.6), так что пропускная способность двух узких дверей оказывается выше, чем у одной, вдвое более широкой.
Рис. 6.7. (а) Движение на перекрестке на какое-то время принимает круговой характер, позволяющий снизить число столкновений и «происшествий». Здесь цвет стрелок указывает на различное направление приближения к перекрестку, целью движения является переход на противоположную сторону, (б) Режим движения на перекрестке можно сделать более эффективным, используя барьеры и указатели (знаки! на рисунке).
Значительно сложнее выглядят картины самоорганизации движения на перекрестках. Моделирование показало, что в этом случае вообще не существует стабильного состояния, позволяющего минимизировать число виртуальных столкновений и «уличных заторов», однако часто возникают некоторые временные режимы движения, при которых потоки пиплоидов двигаются по круіу в том или ином направлении (рис. 6.7, а), и этот результат, возможно, стоило бы использовать на практике при планировании пешеходных маршрутов. Например, установка столба в центре перекрестка исключает маршруты, препятствующие круговому движению, а установленные под углом к направлению потоков барьеры стабилизируют круговое движение, особенно при дополнительном применении указателей и т.п. (рис. 6.7, б).
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Комментарии